ﻻ يوجد ملخص باللغة العربية
The networking industry, compared to the compute industry, has been slow in evolving from a closed ecosystem with limited abstractions to a more open ecosystem with well-defined sophisticated high level abstractions. This has resulted in an ossified Internet architecture that inhibits innovation and is unnecessarily complex. Fortunately, there has been an exciting flux of rapid developments in networking in recent times with prominent trends emerging that have brought us to the cusp of a major paradigm shift. In particular, the emergence of technologies such as cloud computing, software defined networking (SDN), and network virtualization are driving a new vision of `networking as a service (NaaS) in which networks are managed flexibly and efficiently cloud computing style. These technologies promise to both facilitate architectural and technological innovation while also simplifying commissioning, orchestration, and composition of network services. In this article, we introduce our readers to these technologies. In the coming few years, the trends of cloud computing, SDN, and network virtualization will further strengthen each others value proposition symbiotically and NaaS will increasingly become the dominant mode of commissioning new networks.
It is widely acknowledged that the forthcoming 5G architecture will be highly heterogeneous and deployed with a high degree of density. These changes over the current 4G bring many challenges on how to achieve an efficient operation from the network
Complex Event Processing (CEP) is a powerful paradigm for scalable data management that is employed in many real-world scenarios such as detecting credit card fraud in banks. The so-called complex events are expressed using a specification language t
The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users lives more productive, efficient, and convenient. During
Network Functions Virtualization (NFV) allows implantation of network functions to be independent of dedicated hardware devices. Any series of services can be represented by a service function chain which contains a set of virtualized network functio
The air-ground integrated network is a key component of future sixth generation (6G) networks to support seamless and near-instant super-connectivity. There is a pressing need to intelligently provision various services in 6G networks, which however