ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and magnetic characterization of the one-dimensional S = 5/2 antiferromagnetic chain system SrMn(VO4)(OH)

57   0   0.0 ( 0 )
 نشر من قبل Ovidiu Garlea
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121. The structure exhibits a one-dimensional feature, with MnO4 chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearest Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. The presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.



قيم البحث

اقرأ أيضاً

Large single crystals of the new compound SrMn$_2$V$_2$O$_8$ have been grown by the floating-zone method. This transition-metal based oxide is isostructural to SrNi$_2$V$_2$O$_8$, described by the tetragonal space group $I4_1cd$. Magnetic properties were investigated by means of susceptibility, magnetization, and specific heat measurements. The title compound behaves like a one-dimensional magnetic system above the ordering temperature ($T_N$ = 43 K). The magnetic ground state can be described as a classical long-range ordered antiferromagnet with weak anisotropy.
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility , magnetization and specific heat measurements on powder samples. The magnetic susceptibility chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3.
145 - A. Moller , T. Taetz , N. Hollmann 2007
We report structural, magnetization, electrical resistivity and nuclear- and electron spin resonance data of the complex transition metal oxide In_2VO_5 in which structurally well-defined V-O chains are realized. An itinerant character of the vanadiu m d-electrons and ferromagnetic correlations, revealed at high temperatures, are contrasted with the insulating behavior and predominantly antiferromagnetic exchange between the localized V^{4+} S = 1/2-magnetic moments which develop below a certain characteristic temperature T* ~ 120 K. Eventually the compound exhibits short-range magnetic order at $T_SRO ~ 20 K. We attribute this crossover occurring around T* to the unusual anisotropic thermal contraction of the lattice which changes significantly the overlap integrals and the character of magnetic intra- and interchain interactions.
Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a lar ge zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temper atures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu$_2$V$_2$O$_8$ which we show to be an alternating antiferromagnetic-ferromagnetic spin$-1/2$ chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا