ﻻ يوجد ملخص باللغة العربية
We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non- Gaussian states employed either as entangled inputs and/or as swapping resources. The quality of the swapping protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed by a general class of tunable non-Gaussian states, the squeezed Bell states, which, by means of controllable free parameters, allows for a continuous morphing from Gaussian twin beams up to maximally non-Gaussian squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections, we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for a monotonically increasing enhancement of the fidelity compared to the corresponding Gaussian setting. This result implies that the use of non-Gaussian resources is necessary to guarantee the success of continuous-variable entanglement swapping in the presence of decoherence.
The paper reports on experimental diagnostics of entanglement swapping protocol by means of collective entanglement witness. Our approach is suitable to detect disturbances occurring in the preparation of quantum states, quantum communication channel
We report an experimental demonstration of entanglement swapping over two quantum stages. By successful realizations of two cascaded photonic entanglement swapping processes, entanglement is generated and distributed between two photons, that origina
Entanglement swapping is a process by which two initially independent quantum systems can become entangled and generate nonlocal correlations. To characterize such correlations, we compare them to those predicted by bilocal models, where systems that
Entanglement distillation is an essential ingredient for long distance quantum communications. In the continuous variable setting, Gaussian states play major roles in quantum teleportation, quantum cloning and quantum cryptography. However, entanglem
Transferring entangled states between photon pairs is essential for quantum communication technologies. Semiconductor quantum dots are the most promising candidate for generating polarization-entangled photons deterministically. Recent improvements i