ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic counterparts of nonlinear parabolic PDE systems

115   0   0.0 ( 0 )
 نشر من قبل Yana Belopolskaya
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the results of the FBSDE theory in order to construct a probabilistic representation of a viscosity solution to the Cauchy problem for a system of quasilinear parabolic equations. We derive a BSDE associated with a class of quailinear parabolic system and prove the existence and uniqueness of its solution. To be able to deal with systems including nondiagonal first order terms along with the underlying diffusion process we consider its multiplicative operator functional. We essentially exploit as well the fact that the system under consideration can be reduced to a scalar equation in a enlarged phase space. This allows to obtain some comparison theorems and to prove that a solution to FBSDE gives rise to a viscosity solution of the original Cauchy problem for a system of quasilinear parabolic equations.



قيم البحث

اقرأ أيضاً

64 - Yana Belopolskaya 2017
We construct a probabilistic representation of a system of fully coupled parabolic equations arising as a model describing spatial segregation of interacting population species. We derive a closed system of stochastic equations such that its solution allows to obtain a probabilistic representation of a weak solution of the Cauchy problem for the PDE system. The corresponded stochastic system is presented in the form of a system of stochastic equations describing nonlinear Markov processes and their multiplicative functionals.
We consider the integral definition of the fractional Laplacian and analyze a linear-quadratic optimal control problem for the so-called fractional heat equation; control constraints are also considered. We derive existence and uniqueness results, fi rst order optimality conditions, and regularity estimates for the optimal variables. To discretize the state equation equation we propose a fully discrete scheme that relies on an implicit finite difference discretization in time combined with a piecewise linear finite element discretization in space. We derive stability results and a novel $L^2(0,T;L^2(Omega))$ a priori error estimate. On the basis of the aforementioned solution technique, we propose a fully discrete scheme for our optimal control problem that discretizes the control variable with piecewise constant functions and derive a priori error estimates for it. We illustrate the theory with one- and two-dimensional numerical experiments.
99 - Jiayin Jin , Shasha Liao , 2017
We prove nonlinear modulational instability for both periodic and localized perturbations of periodic traveling waves for several dispersive PDEs, including the KDV type equations (e.g. the Whitham equation, the generalized KDV equation, the Benjamin -Ono equation), the nonlinear Schrodinger equation and the BBM equation. First, the semigroup estimates required for the nonlinear proof are obtained by using the Hamiltonian structures of the linearized PDEs; Second, for KDV type equations the loss of derivative in the nonlinear term is overcome in two complementary cases: (1) for smooth nonlinear terms and general dispersive operators, we construct higher order approximation solutions and then use energy type estimates; (2) for nonlinear terms of low regularity, with some additional assumption on the dispersive operator, we use a bootstrap argument to overcome the loss of derivative.
104 - Brian C. Hall 2019
This article begins with a brief review of random matrix theory, followed by a discussion of how the large-$N$ limit of random matrix models can be realized using operator algebras. I then explain the notion of Brown measure, which play the role of t he eigenvalue distribution for operators in an operator algebra. I then show how methods of partial differential equations can be used to compute Brown measures. I consider in detail the case of the circular law and then discuss more briefly the case of the free multiplicative Brownian motion, which was worked out recently by the author with Driver and Kemp.
We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discret e lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا