ﻻ يوجد ملخص باللغة العربية
Let $G$ be a connected reductive algebraic group over an algebraically closed field $k$, and assume that the characteristic of $k$ is zero or a pretty good prime for $G$. Let $P$ be a parabolic subgroup of $G$ and let $mathfrak p$ be the Lie algebra of $P$. We consider the commuting variety $mathcal C(mathfrak p) = {(X,Y) in mathfrak p times mathfrak p mid [X,Y] = 0}$. Our main theorem gives a necessary and sufficient condition for irreducibility of $mathcal C(mathfrak p)$ in terms of the modality of the adjoint action of $P$ on the nilpotent variety of $mathfrak p$. As a consequence, for the case $P = B$ a Borel subgroup of $G$, we give a classification of when $mathcal C(mathfrak b)$ is irreducible; this builds on a partial classification given by Keeton. Further, in cases where $mathcal C(mathfrak p)$ is irreducible, we consider whether $mathcal C(mathfrak p)$ is a normal variety. In particular, this leads to a classification of when $mathcal C(mathfrak b)$ is normal.
Let $G$ be a connected reductive algebraic group defined over an algebraically closed field $mathbbm k$ of characteristic zero. We consider the commuting variety $mathcal C(mathfrak u)$ of the nilradical $mathfrak u$ of the Lie algebra $mathfrak b$ o
The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with rational singularities. Moreover, their can
The commuting variety of a reductive Lie algebra ${goth g}$ is the underlying variety of a well defined subscheme of $gg g{}$. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.
We give a short proof based on Lusztigs generalized Springer correspondence of some results of [BrCh,BaCr,P].
This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over C and over C[t_1, t_2,...,t_n]. We show these group actions are the same as an action of simple transposition