ﻻ يوجد ملخص باللغة العربية
A not satisfactorily solved problem of relativistic transformation of temperature playing the decisive role in relativistic thermal physics and cosmology is reopened. It is shown that the origin of the so called Mosengeil-Otts antinomy and other aligned paradoxes are related to the wrong understanding of physical meaning of temperature and application of Plancks Ansatz of Lorentzs invariance of entropy. In the contribution we have thus reintroduced and anew analyzed fundamental concepts of hotness manifold, fixed thermometric points and temperature. Finally, on the basis of phenomenological arguments the Lorentz invariance of temperature and relativistic transformations of entropy are established.
This contribution adds to the points on the <indeterminacy of special relativity> made by De Abreu and Guerra. We show that the Lorentz Transformation can be composed by the physical observations made in a frame K of events in a frame K-prime viz i)
We use coordinate transformation theory to realize substrates that can modify the emission of an embedded source. Simulation results show that with proper transformation functions the energy radiated by a source embedded in these space variant media
The Kustaanheimo-Stiefel (KS) transformation maps the non-linear and singular equations of motion of the three-dimensional Kepler problem to the linear and regular equations of a four-dimensional harmonic oscillator. It is used extensively in studies
Relativistic kinematics is usually considered only as a manifestation of pseudo-Euclidean (Lorentzian) geometry of space-time. However, as it is explicitly stated in General Relativity, the geometry itself depends on dynamics, specifically, on the en
Based on rigorous scattering theory we establish a systematic methodology for research of metamaterial-modified current-carrying conductors, from which we mathematically demonstrate the explanation of transformation optics could be extended in metama