ﻻ يوجد ملخص باللغة العربية
Regarding three-dimensional (3D) topological insulators and semimetals as a stack of constituent 2D topological (or sometimes non-topological) layers is a useful viewpoint. Primarily, concrete theoretical models of the paradigmatic 3D topological phases such as Weyl semimetal (WSM), strong and weak topological insulators (STI/WTI), and Chern insulator (CI), are often constructed in that way. Secondarily, fabrication of the corresponding 3D topological material is also done in the same spirit; epitaxial growth technique is employed, making the resulting sample in the form of a thin film. Here, in this paper we calculate $mathbb{Z}$- and $mathbb{Z}_2$-indices and study evolution of the topological properties of such thin films of 3D topological systems, making also a comparative study of CI- vs. TI-type models belonging to different symmetry classes in this respect. Through this comparative study we suggest that WSM is to CI as STI is to WTI. Finally, to test the robustness of our scenario against disorder and relevance to experiments we have also studied numerically the two-terminal conductance of the system using transfer matrix method.
The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a Weyl semimetal confined to a thin film with an in-plan
We propose characterization of the three-dimensional topological insulator by using the Chern number for the entanglement Hamiltonian (entanglement Chern number). Here we take the extensive spin partition of the system, that pulls out the quantum ent
We present a comprehensive study of the crystal structure of the thin-film, ferromagnetic topological insulator (Bi, Sb)$_{2-x}$V$_x$Te$_3$. The dissipationless quantum anomalous Hall edge states it manifests are of particular interest for spintronic
We carried out point contact (PC) investigation of WTe2 single crystals. We measured Yanson d2V/dI2 PC spectra of the electron-phonon interaction (EPI) in WTe2. The spectra demonstrate a main phonon peak around 8 meV and a shallow second maximum near
Within a relativistic quantum formalism we examine the role of second-order corrections caused by the application of magnetic fields in two-dimensional topological and Chern insulators. This allows to reach analytical expressions for the change of th