ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Sparse Recovery Models for Bad Data Detection and State Esti-mation in Electric Power Networks

289   0   0.0 ( 0 )
 نشر من قبل Weiye Zheng
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the sparse recovery models for bad data detection and state estimation in power networks. Two sparse models, the sparse L1-relaxation model (L1-R) and the multi-stage convex relaxation model (Capped-L1), are compared with the weighted least absolute value (WLAV) in the aspects of the bad data processing capacity and the computational efficiency. Numerical tests are conducted on power systems with linear and nonlinear measurements. Based on numerical tests, the paper evaluates the performance of these robust state estimation mod-els. Furthermore, suggestion on how to select parameter of sparse recovery models is also given when they are used in elec-tric power networks.

قيم البحث

اقرأ أيضاً

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal componen t of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed.
Recent increases in gas-fired power generation have engendered increased interdependencies between natural gas and power transmission systems. These interdependencies have amplified existing vulnerabilities to gas and power grids, where disruptions c an require the curtailment of load in one or both systems. Although typically operated independently, coordination of these systems during severe disruptions can allow for targeted delivery to lifeline services, including gas delivery for residential heating and power delivery for critical facilities. To address the challenge of estimating maximum joint network capacities under such disruptions, we consider the task of determining feasible steady-state operating points for severely damaged systems while ensuring the maximal delivery of gas and power loads simultaneously, represented mathematically as the nonconvex joint Maximal Load Delivery (MLD) problem. To increase its tractability, we present a mixed-integer convex relaxation of the MLD problem. Then, to demonstrate the relaxations effectiveness in determining bounds on network capacities, exact and relaxed MLD formulations are compared across various multi-contingency scenarios on nine joint networks ranging in size from 25 to 1,191 nodes. The relaxation-based methodology is observed to accurately and efficiently estimate the impacts of severe joint network disruptions, often converging to the relaxed MLD problems globally optimal solution within ten seconds.
109 - Jinming Wen , Rui Zhang , 2020
Exact recovery of $K$-sparse signals $x in mathbb{R}^{n}$ from linear measurements $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix, arises from many applications. The orthogonal matching pursuit (OMP) algorithm is widely used for reconst ructing $x$. A fundamental question in the performance analysis of OMP is the characterizations of the probability of exact recovery of $x$ for random matrix $A$ and the minimal $m$ to guarantee a target recovery performance. In many practical applications, in addition to sparsity, $x$ also has some additional properties. This paper shows that these properties can be used to refine the answer to the above question. In this paper, we first show that the prior information of the nonzero entries of $x$ can be used to provide an upper bound on $|x|_1^2/|x|_2^2$. Then, we use this upper bound to develop a lower bound on the probability of exact recovery of $x$ using OMP in $K$ iterations. Furthermore, we develop a lower bound on the number of measurements $m$ to guarantee that the exact recovery probability using $K$ iterations of OMP is no smaller than a given target probability. Finally, we show that when $K=O(sqrt{ln n})$, as both $n$ and $K$ go to infinity, for any $0<zetaleq 1/sqrt{pi}$, $m=2Kln (n/zeta)$ measurements are sufficient to ensure that the probability of exact recovering any $K$-sparse $x$ is no lower than $1-zeta$ with $K$ iterations of OMP. For $K$-sparse $alpha$-strongly decaying signals and for $K$-sparse $x$ whose nonzero entries independently and identically follow the Gaussian distribution, the number of measurements sufficient for exact recovery with probability no lower than $1-zeta$ reduces further to $m=(sqrt{K}+4sqrt{frac{alpha+1}{alpha-1}ln(n/zeta)})^2$ and asymptotically $mapprox 1.9Kln (n/zeta)$, respectively.
58 - Cedric Josz 2017
We show that the sparse polynomial interpolation problem reduces to a discrete super-resolution problem on the $n$-dimensional torus. Therefore the semidefinite programming approach initiated by Cand`es & Fernandez-Granda cite{candes_towards_2014} in the univariate case can be applied. We extend their result to the multivariate case, i.e., we show that exact recovery is guaranteed provided that a geometric spacing condition on the supports holds and the number of evaluations are sufficiently many (but not many). It also turns out that the sparse recovery LP-formulation of $ell_1$-norm minimization is also guaranteed to provide exact recovery {it provided that} theevaluations are made in a certain manner and even though the Restricted Isometry Property for exact recovery is not satisfied. (A naive sparse recovery LP-approach does not offer such a guarantee.) Finally we also describe the algebraic Prony method for sparse interpolation, which also recovers the exact decomposition but from less point evaluations and with no geometric spacing condition. We provide two sets of numerical experiments, one in which the super-resolution technique and Pronys method seem to cope equally well with noise, and another in which the super-resolution technique seems to cope with noise better than Pronys method, at the cost of an extra computational burden (i.e. a semidefinite optimization).
We propose a framework for integrating optimal power flow (OPF) with state estimation (SE) in the loop for distribution networks. Our approach combines a primal-dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors for system monitoring, instead of assuming exact knowledge of all states. The estimation algorithm reduces uncertainty on unmeasured grid states based on a few appropriate online state measurements and noisy pseudo-measurements. We analyze the convergence of the proposed algorithm and quantify the statistical estimation errors based on a weighted least squares (WLS) estimator. The numerical results on a 4521-node network demonstrate that this approach can scale to extremely large networks and provide robustness to both large pseudo measurement variability and inherent sensor measurement noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا