ﻻ يوجد ملخص باللغة العربية
Kashiwara and Saito have a geometric construction of the infinity crystal for any symmetric Kac-Moody algebra. The underlying set consists of the irreducible components of Lusztigs quiver varieties, which are varieties of nilpotent representations of a pre-projective algebra. We generalize this to symmetrizable Kac-Moody algebras by replacing Lusztigs preprojective algebra with a more general one due to Dlab and Ringel. In non-symmetric types we are forced to work over non-algebraically-closed fields.
We have two constructions of the level-$(0,1)$ irreducible representation of the quantum toroidal algebra of type $A$. One is due to Nakajima and Varagnolo-Vasserot. They constructed the representation on the direct sum of the equivariant K-groups of
Let $mathscr{A}_q$ be the $K$-theoretic Coulomb branch of a $3d$ $mathcal{N}=4$ quiver gauge theory with quiver $Gamma$, and $mathscr{A}_q subseteq mathscr{A}_q$ be the subalgebra generated by the equivariant $K$-theory of a point together with the d
In the present work we study actions of various groups generated by involutions on the category $mathscr O^{int}_q(mathfrak g)$ of integrable highest weight $U_q(mathfrak g)$-modules and their crystal bases for any symmetrizable Kac-Moody algebra $ma
We study quantum geometry of Nakajima quiver varieties of two different types - framed A-type quivers and ADHM quivers. While these spaces look completely different we find a surprising connection between equivariant K-theories thereof with a nontriv
The quiver Hopf algebras are classified by means of ramification systems with irreducible representations. This leads to the classification of Nichols algebras over group algebras and pointed Hopf algebras of type one.