ﻻ يوجد ملخص باللغة العربية
High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic Interstellar Medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight (LOS). Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 micron DIB towards a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the HI 21 cm measurements, following a new technique of decomposition of the emission spectra. From ~16 000 available hot telluric spectra we have extracted ~ 6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.
The Solar System is located within a low-density cavity, known as the Local Bubble, which appears to be filled with an X-ray emitting gas at a temperature of 10$^6$ K. Such conditions are too harsh for typical interstellar atoms and molecules to surv
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of th
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interst
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances