ﻻ يوجد ملخص باللغة العربية
Recent surveys have identified a seemingly ubiquitous population of galaxies with elevated [OIII]/H$beta$ emission line ratios at $z > 1$, though the nature of this phenomenon continues to be debated. The [OIII]/H$beta$ line ratio is of interest because it is a main component of the standard diagnostic tools used to differentiate between active galactic nuclei (AGN) and star-forming galaxies, as well as the gas-phase metallicity indicators $O_{23}$ and $R_{23}$. Here, we investigate the primary driver of increased [OIII]/H$beta$ ratios by median-stacking rest-frame optical spectra for a sample of star-forming galaxies in the 3D-HST survey in the redshift range $zsim1.4-2.2$. Using $N = 4220$ star-forming galaxies, we stack the data in bins of mass and specific star formation rates (sSFR) respectively. After accounting for stellar Balmer absorption, we measure [OIII]$lambda5007$AA/H$beta$ down to $mathrm{M} sim 10^{9.2} mathrm{M_odot}$ and sSFR $sim 10^{-9.6} mathrm{yr}^{-1}$, more than an order of magnitude lower than previous work at similar redshifts. We find an offset of $0.59pm0.05$ dex between the median ratios at $zsim2$ and $zsim0$ at fixed stellar mass, in agreement with existing studies. However, with respect to sSFR, the $z sim 2$ stacks all lie within 1$sigma$ of the median SDSS ratios, with an average offset of only $-0.06pm 0.05$. We find that the excitation properties of galaxies are tightly correlated with their sSFR at both $zsim2$ and $zsim0$, with a relation that appears to be roughly constant over the last 10 Gyr of cosmic time.
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Te
We have observed a sample of typical z=1 star forming galaxies, selected from the HiZELS survey, with the new KMOS near-infrared, multi-IFU instrument on the VLT, in order to obtain their dynamics and metallicity gradients. The majority of our galaxi
We investigate the co-evolution of black-hole-accretion-rate (BHAR) and star-formation-rate (SFR) in $1.5<z<2.5$ galaxies displaying a greater diversity of star-forming properties compared to previous studies. We combine X-ray stacking and far-IR pho
Using deep multi-wavelength photometry of galaxies from ZFOURGE, we group galaxies at $2.5<z<4.0$ by the shape of their spectral energy distributions (SEDs). We identify a population of galaxies with excess emission in the $K_s$-band, which correspon
We investigate the clustering properties of $sim 7000$ H$beta$+[OIII] and [OII] narrowband-selected emitters at $z sim 0.8 - 4.7$ from the High-$z$ Emission Line Survey. We find clustering lengths, $r_0$, of $1.5 - 4.0h^{-1}$ Mpc and minimum dark mat