ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of $delta$~Cephei

99   0   0.0 ( 0 )
 نشر من قبل Alexandre Gallenne
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new CHARA/MIRC interferometric observations of the Cepheid archetype $delta$ Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range $Delta H $ = 6.4, 5.8, and 5.2 mag, respectively within the relative distance to the Cepheid $r < 25$ mas, $25 < r < 50$ mas and $50 < r < 100$ mas. Our observations did not show strong evidence of a companion. We have a marginal detection at $3sigma$ with a flux ratio of 0.21%, but nothing convincing as we found other possible probable locations. We ruled out the presence of companion with a spectral type earlier than F0V, A1V and B9V, respectively for the previously cited ranges $r$. From our estimated sensitivity limits and the Cepheid light curve, we derived lower-limit magnitudes in the $H$ band for this possible companion to be $H_mathrm{comp} > 9.15, 8.31$ and 7.77 mag, respectively for $r < 25$ mas, $25 < r < 50$ mas and $50 < r < 100$ mas. We also found that to be consistent with the predicted orbital period, the companion has to be located at a projected separation $< 24$ mas with a spectral type later than a F0V star.



قيم البحث

اقرأ أيضاً

Aims: We aim at detecting and characterizing the main-sequence companion of the Cepheid AX Cir ($P_mathrm{orb} sim $ 18 yrs). The long-term objective is to estimate the mass of both components and the distance to the system. Methods: We used the PION IER combiner at the VLT Interferometer to obtain the first interferometric measurements of the short-period Cepheid AX Cir and its orbiting component. Results: The companion is resolved by PIONIER at a projected separation $rho = 29.2 pm 0.2$ mas and projection angle $PA = 167.6 pm 0.3^{circ}$. We measured $H$-band flux ratios between the companion and the Cepheid of $0.90 pm 0.10$ % and $0.75 pm 0.17$ %, respectively at a pulsation phase for the Cepheid $phi = 0.24$ and 0.48. The lower contrast at $phi = 0.48$ is due to increased brightness of the Cepheid compared to the $phi = 0.24$. This gives an average apparent magnitude $mmathrm{_H (comp)} = 9.06 pm 0.24$ mag. The limb-darkened angular diameter of the Cepheid at the two pulsation phases was measured to be $theta_mathrm{LD} = 0.839 pm 0.023$ mas and $theta_mathrm{LD} = 0.742 pm 0.020$ mas, respectively at $phi = 0.24$ and 0.48. A lower limit on the total mass of the system was also derived based on our measured separation, we found $M_mathrm{T} geq 9.7 pm 0.6 M_odot$.
144 - N.D. Thureau 2009
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed I nterferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.
69 - Daniel Bonneau 2015
This paper serves as a reference on how to estimate the parameters of binary stars and how to combine multiple techniques, namely astrometry, interferometry and radial velocities.
The projection factor (p-factor) is an essential component of the classical Baade-Wesselink (BW) technique, that is commonly used to determine the distances to pulsating stars. It is a multiplicative parameter used to convert radial velocities into p ulsational velocities. As the BW distances are linearly proportional to the p-factor, its accurate calibration for Cepheids is of critical importance for the reliability of their distance scale. We focus on the observational determination of the p-factor of the long-period Cepheid RS Pup (P = 41.5 days). This star is particularly important as this is one of the brightest Cepheids in the Galaxy and an analog of the Cepheids used to determine extragalactic distances. An accurate distance of 1910 +/- 80 pc (+/- 4.2%) has recently been determined for RS Pup using the light echoes propagating in its circumstellar nebula. We combine this distance with new VLTI/PIONIER interferometric angular diameters, photometry and radial velocities to derive the p-factor of RS Pup using the code Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). We obtain p = 1.250 +/- 0.064 (+/-5.1%), defined for cross-correlation radial velocities. Together with measurements from the literature, the p-factor of RS Pup confirms the good agreement of a constant p = 1.293 +/- 0.039 (+/-3.0%) model with the observations. We conclude that the p-factor of Cepheids is constant or mildly variable over a broad range of periods (3.7 to 41.5 days).
Observations of 48 red-clump stars were obtained in the H band with the PIONIER instrument installed at the Very Large Telescope Interferometer. Limb-darkened angular diameters were measured by fitting radial intensity profile I(r) to square visibili ty measurements. Half the angular diameters determined have formal errors better than 1.2%, while the overall accuracy is better than 2.7%. Average stellar atmospheric parameters (effective temperatures, metallicities and surface gravities) were determined from new spectroscopic observations and literature data and combined with precise Gaia parallaxes to derive a set of fundamental stellar properties. These intrinsic parameters were then fitted to existing isochrone models to infer masses and ages of the stars. The added value from interferometry imposes a better and independent constraint on the R-Teff plane. Our derived values are consistent with previous works, although there is a strong scatter in age between various models. This shows that atmospheric parameters, mainly metallicities and surface gravities, still suffer from a non-accurate determination, limiting constraints on input physics and parameters of stellar evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا