ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the $p(e,epi^+)n$ reaction close to threshold and at low $Q^2$

129   0   0.0 ( 0 )
 نشر من قبل Ivica Fri\\v{s}\\v{c}i\\'c
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross section of the $p(e,epi^+)n$ reaction has been measured for five kinematic settings at an invariant mass of $W = 1094$ MeV and for a four-momentum transfer of $Q^2 = 0.078$ (GeV/$c$)$^2$. The measurement has been performed at MAMI using a new short-orbit spectrometer (SOS) of the A1 collaboration, intended for detection of low-energy pions. The transverse and longitudinal cross section terms were separated using the Rosenbluth method and the transverse-longitudinal interference term has been determined from the left-right asymmetry. The experimental cross section terms are compared with the calculations of three models: DMT2001, MAID2007 and $chi$MAID. The results show that we do not yet understand the dynamics of the fundamental pion.



قيم البحث

اقرأ أيضاً

New results are reported from a measurement of $pi^0$ electroproduction near threshold using the $p(e,e^{prime} p)pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $phi^*_{pi}$ and $theta^*_{pi}$ angles in the $p pi^0$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2>0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement.
We report measurements of target- and double-spin asymmetries for the exclusive channel $vec evec pto epi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted f rom data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $6^circ$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
We report the first extraction of the pion-nucleon multipoles near the production threshold for the $npi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expec ted in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. The data analyzed in this work were collected by the nearly $4pi$ CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754 $rm{GeV}$ electron beam on a proton target. The differential cross section and the $pi-N$-multipole $E_{0+}/G_D$ were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost $Q^2$ independent.
82 - P. Winter , H.-H. Adam , F. Bauer 2002
Measurements of the eta meson production with a polarised proton beam in the reaction p(pol) p --> p p eta have been carried out at an excess energy of Q = 40 MeV. The dependence of the analysing power A_y on the polar angle theta^*_q of the eta meso n in the center of mass system (CMS) has been studied. The data indicate the possibility of an influence of p- and d-waves to the close to threshold eta production.
208 - H.P. Blok , T. Horn , G.M. Huber 2008
Cross sections for the reaction ${^1}$H($e,epi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data we re taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $sigma_L$, $sigma_T$, $sigma_{LT}$, and $sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction ${^1}$H($e,epi^+$)$n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا