ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Double White Dwarfs and the AM CVn Birthrate

64   0   0.0 ( 0 )
 نشر من قبل Mukremin Kilic
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02 to 1.39 Msun. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disk and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This rate, 0.00017/year, is consistent with the AM CVn space density estimated from the Sloan Digital Sky Survey. Hence, stable mass transfer double white dwarf progenitors can account for the entire AM CVn population in the Galaxy.

قيم البحث

اقرأ أيضاً

We apply the Deloye & Bildsten (2003) isentropic models for donors in ultracompact low-mass X-ray binaries to the AM CVn population of ultracompact, interacting binaries. The mass-radius relations of these systems donors in the mass range of interest ($M_2<0.1 msun$) are not single-valued, but parameterized by the donors specific entropy. This produces a range in the relationships between system observables, such as orbital period, $Porb$, and mass transfer rate, $Mdot$. For a reasonable range in donor specific entropy, $Mdot$ can range over several orders of magnitude at fixed $Porb$. We determine the unique relation between $Mdot$ and $M_2$ in the AM CVn systems with known donor to accretor mass ratios, $q=M_2/M_1$. We use structural arguments, as well as each systems photometric behavior, to place limits on $Mdot$ and $M_2$ in each. Most systems allow a factor of about 3 variation in $Mdot$, although V803 Cen, if the current estimates of its $q$ are accurate, is an exception and must have $M_2 approx 0.02 msun$ and $Mdot approx 10^{-10} msun$ yr$^{-1}$. Our donor models also constrain each donors core temperature, $T_c$, range and correlate $T_c$ with $M_2$. We examine how variations in donor specific entropy across the white dwarf family citep{nele01a} of AM CVn systems affects this populations current galactic distribution. Allowing for donors that are not fully degenerate produces a shift in systems towards longer $Porb$ and higher $Mdot$ increasing the parameter space in which these systems can be found. This shift increases the fraction of systems whose $Porb$ is long enough that their gravity wave (GW) signal is obscured by the background of detached double white dwarf binaries that dominate the GW spectrum below a frequency $approx 2$ mHz.
We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in A M CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
Ultra-massive white dwarfs are powerful tools to study various physical processes in the Asymptotic Giant Branch (AGB), type Ia supernova explosions and the theory of crystallization through white dwarf asteroseismology. Despite the interest in these white dwarfs, there are few evolutionary studies in the literature devoted to them. Here, we present new ultra-massive white dwarf evolutionary sequences that constitute an improvement over previous ones. In these new sequences, we take into account for the first time the process of phase separation expected during the crystallization stage of these white dwarfs, by relying on the most up-to-date phase diagram of dense oxygen/neon mixtures. Realistic chemical profiles resulting from the full computation of progenitor evolution during the semidegenerate carbon burning along the super-AGB phase are also considered in our sequences. Outer boundary conditions for our evolving models are provided by detailed non-gray white dwarf model atmospheres for hydrogen and helium composition. We assessed the impact of all these improvements on the evolutionary properties of ultra-massive white dwarfs, providing up-dated evolutionary sequences for these stars. We conclude that crystallization is expected to affect the majority of the massive white dwarfs observed with effective temperatures below $40,000, rm K$. Moreover, the calculation of the phase separation process induced by crystallization is necessary to accurately determine the cooling age and the mass-radius relation of massive white dwarfs. We also provide colors in the GAIA photometric bands for our H-rich white dwarf evolutionary sequences on the basis of new models atmospheres. Finally, these new white dwarf sequences provide a new theoretical frame to perform asteroseismological studies on the recently detected ultra-massive pulsating white dwarfs.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we s how strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3~M_{odot}$ if they had pure H atmospheres and CO cores, including two out liers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to $M=1.334 M_odot$, which corresponds to the high-density limit of our equation-of-state tables, $rho = 10^9$ g cm$^{-3}$. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا