ﻻ يوجد ملخص باللغة العربية
We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce correct monomer packing. We generate $15$ melts of $500$ chains of $10.000$ beads for varying chain stiffness as well as a number of melts with $1.000$ chains of $15.000$ monomers. To validate the equilibration process we study the time evolution of bulk, collective and single-chain observables at the monomeric, mesoscopic and macroscopic length scales. Extension of the present method to longer, branched or polydisperse chains and/or larger system sizes is straight forward.
It is commonly accepted that in concentrated solutions or melts high-molecular weight polymers display random-walk conformational properties without long-range correlations between subsequent bonds. This absence of memory means, for instance, that th
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime
Nonlinear extensional flows are common in polymer processing but remain challenging theoretically because dramatic stretching of chains deforms the entanglement network far from equilibrium. Here, we present coarse-grained simulations of extensional
We present a numerical study of the slip link model introduced by Likhtman for describing the dy- namics of dense polymer melts. After reviewing the technical aspects associated with the implemen- tation of the model, we extend previous work in sever
Based on non-equilibrium molecular dynamics simulations of entangled polymer melts, a recent Letter [Phys. Rev. Lett. $textbf{121}$, 047801 (2018), arXiv:1806.09509] claims that the rising extensional stress is quantitatively consistent with the decr