ﻻ يوجد ملخص باللغة العربية
Studies on neutrino-nucleon ($ u N$) cross sections at different energy scales have regained interest due to increasing importance of precision measurements, as they are needed as an ingredient in all neutrino experiments. In this paper we have calculated both charged current (CC) and neutral current (NC) $ u$N scattering cross sections at Ultra High Energy (UHE) regime in the neutrino energy ($E_{ u}$) region i.e. $10^{9} GeV le E_{ u} le 10^{12}$ GeV using QCD inspired double asymptotic limit fit of electron-proton structure function $F_{2}^{ep}$ to low $mathit{x}$ HERA data. The form $F_{2}^{ep} sim x^{-lambda(Q^{2})}$ used in our analysis, can be conjectured like a dynamic pomeron (DP)-type behaviour. We also find an analytic form of the total cross sections, $sigma_{CC}^{ u N}$ and $sigma_{NC}^{ u N}$ which appear to be of hard-pomeron exchange types. A comparative analysis of our results with those available in literature is also done. An improved understanding of $ u N$ interactions at UHE are essentially important for future oscillation experiments. Future measurements will support/confront our predictions. textbf{Keywords}: Neutrino cross section, Ultra High Energy, QCD, Double Asymptotic limit, dynamic pomeron, hard-pomeron.
Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regi
We evaluate both the tau lepton energy loss produced by photonuclear interactions and the neutrino charged current cross section at ultra-high energies, relevant to neutrino bounds with Earth-skimming tau neutrinos, using different theoretical and ph
We compare predictions for high energy neutrino and anti-neutrino deep inelastic scattering cross-sections within the conventional DGLAP formalism of next-to-leading order QCD, using the latest parton distribution functions such as CT10, HERAPDF1.5 a
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. The interaction rate is modulated by the neutrino interaction cross section and affects the flux arriving at the IceCube Neutrino Observa
The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple paramet