ﻻ يوجد ملخص باللغة العربية
We present the first measurements of the shape of the far-ultraviolet (far-UV; lambda=950-1500 A) dust attenuation curve at high redshift (z~3). Our analysis employs rest-frame UV spectra of 933 galaxies at z~3, 121 of which have very deep spectroscopic observations (>7 hrs) at lambda=850-1300 A, with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z~3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of HI, and absorption from the Lyman-Werner bands of H2 with a small (<20%) covering fraction. The low covering fraction of H2 relative to that of the HI and dust suggests that most of the dust in the ISM of typical galaxies at z~3 is unrelated to the catalysis of H2, and is associated with other phases of the ISM (i.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ~2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z~3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in HII regions or, more generally, in the ionized or low column density (N(HI)<10^17.2 cm^-2) neutral ISM of high-redshift galaxies.
We present results on the dust attenuation curve of z~2 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Our sample consists of 224 star-forming galaxies with nebular spectroscopic redshifts in the range z= 1.3
We use a sample of 532 star-forming galaxies at redshifts $zsim 1.4-2.6$ with deep rest-frame optical spectra from the MOSFIRE Deep Evolution Field (MOSDEF) survey to place the first constraints on the nebular attenuation curve at high redshift. Base
We derive the mean wavelength dependence of stellar attenuation in a sample of 239 high redshift (1.90 < z < 2.35) galaxies selected via Hubble Space Telescope (HST) WFC3 IR grism observations of their rest-frame optical emission lines. Our analysis
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we
We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIR