ترغب بنشر مسار تعليمي؟ اضغط هنا

Field dependence of the vortex core size probed by STM

159   0   0.0 ( 0 )
 نشر من قبل H. Suderow
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes relation between DOS and the order parameter that reproduces well Scanning Tunneling Microscopy (STM) data in several superconducting materials. In the single gap superconductor $beta$-Bi$_2$Pd, we find that N(r) is governed by a length scale $xi_H=sqrt{phi_0/2pi H}$, which decreases in rising fields. The vortex core size $cal C$, defined via the slope of the order parameter at the vortex center, $cal C$ $propto (d Delta /dr |_{r to 0})^{-1}$, differs from $xi_H$ by a material dependent numerical factor. For two gap superconductors 2H-NbSe$_{1.8}$S$_{0.2}$ and 2H-NbS$_2$, we find that $cal C$ is field independent and has the same value for both bands. We conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.


قيم البحث

اقرأ أيضاً

We theoretically investigate the quasiparticle scattering rate $varGamma$ inside a vortex core in the existence of non-magnetic impurities distributed randomly in a superconductor. We show that the dependence of $varGamma$ on the magnetic field direc tion is sensitive to the sign of the pair potential. The behavior of $varGamma$ is quite different between an s-wave and a d-wave pair potential, where these are assumed to have the same amplitude anisotropy, but a sign change only for the d-wave one. It is suggested that measurements of the microwave surface impedance with changing applied-field directions would be used for the phase-sensitive identification of pairing symmetry.
In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and hole-like states have been found to exhibit spatial modulations in anti-phase with each other along the Cu-O bonding direction. Some kind of one-dimensionality has been obs erved in the vortex core, and it is more clearly seen in differential conductance maps at lower biases below +-9 mV.
Muon-spin rotation spectroscopy has been used to measure the internal magnetic field distribution in NbSe2 for Hc1 << H < 0.25 Hc2. The deduced profiles of the supercurrent density indicate that the vortex-core radius in the bulk decreases sharply wi th increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which the core radius depends on the intervortex spacing is used to model this behaviour. In addition, we find for the first time that the in-plane magnetic penetration depth increases linearly with H in the vortex state of a conventional superconductor.
131 - J. Nossler , R. Seerig , S. Yasin 2017
By use of ultrasound studies we resolved magneto-acoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C. Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal alpha band. This contrasts de Haas--van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.
101 - V.R. Misko , B. Xu , 2008
Recent experiments [I.V. Grigorieva et al., Phys. Rev. Lett. 96, 077005 (2006)] on visualization of vortices using the Bitter decoration technique revealed vortex shells in mesoscopic superconducting Nb disks containing up to L=40 vortices. Some of t he found configurations did not agree with those predicted theoretically. We show here that this discrepancy can be traced back to the larger disks with radii R ~ 1 to 2.5mu m, i.e., R ~ 50-100xi(0) used in the experiment, while in previous theoretical studies vortex states with vorticity L < 40 were analyzed for smaller disks with R ~ 5-20xi(0). The present analysis is done for thin disks (mesoscopic regime) and for thick (macroscopic) disks where the London screening is taken into account. We found that the radius of the superconducting disk has a pronounced influence on the vortex configuration in contrast to, e.g., the case of parabolic confined charged particles. The missing vortex configurations and the region of their stability are found, which are in agreement with those observed in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا