ﻻ يوجد ملخص باللغة العربية
We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applications, we prove that there are sign changes in intervals within sequences of coefficients of GL(2) holomorphic cusp forms, GL(2) Maass forms, and GL(3) Maass forms. Building on previous works by the authors, we prove that there are sign changes in intervals within sequences of partial sums of coefficients of GL(2) holomorphic cusp forms and Maass forms.
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher
We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymp
In this note, we give a detailed proof of an asymptotic for averages of coefficients of a class of degree three $L$-functions which can be factorized as a product of a degree one and a degree two $L$-functions. We emphasize that we can break the $1/2
We produce nontrivial asymptotic estimates for shifted sums of the form $sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to stre
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.