ﻻ يوجد ملخص باللغة العربية
This manual describes the usage and structure of FormFlavor, a Mathematica-based tool for computing a broad list of flavor and CP observables in general new physics models. Based on the powerful machinery of FeynArts and FormCalc, FormFlavor calculates the one-loop Wilson coefficients of the dimension 5 and 6 Standard Model effective Lagrangian entirely from scratch. These Wilson coefficients are then evolved down to the low scale using one-loop QCD RGEs, where they are transformed into flavor and CP observables. The last step is accomplished using a model-independent, largely stand-alone package called FFObservables that is included with FormFlavor. The SM predictions in FFObservables include up-to-date references and accurate current predictions. Using the functions and modular structure provided by FormFlavor, it is straightforward to add new observables. Currently, FormFlavor is set up to perform these calculations for the general, non-MFV MSSM, but in principle it can be generalized to arbitrary FeynArts models. FormFlavor and an up-to-date manual can be downloaded from: http://formflavor.hepforge.org.
FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3r
In this paper we describe Herwig++ version 2.3, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron collisions. A number of important hard scattering processes are available, togethe
DPMJET samples hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at high energies. The two-component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary interaction. Particle
We present here an installation guide, a hand-on mini-tutorial through examples, and the theoretical foundations of the Hilbert++ code.
{sc SigSpec} computes the spectral significance levels for the DFT amplitude spectrum of a time series at arbitrarily given sampling. It is based on the analytical solution for the Probability Density Function (PDF) of an amplitude level, including d