ﻻ يوجد ملخص باللغة العربية
Standard weak measurement (SWM) has been proved to be a useful ingredient for measuring small longitudinal phase shifts. [Phys. Rev. Lett. 111, 033604 (2013)]. In this letter, we show that with specfic pre-coupling and postselection, destructive interference can be observed for the two conjugated variables, i.e. time and frequency, of the meter state. Using a broad band source, this conjugated destructive interference (CDI) can be observed in a regime approximately 1 attosecond, while the related spectral shift reaches hundreds of THz. This extreme sensitivity can be used to detect tiny longitudinal phase perturbation. Combined with a frequency-domain analysis, conjugated destructive interference weak measurement (CDIWM) is proved to outperform SWM by two orders of magnitude.
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary. We show that totally destructive interference does not require mutu
As the minituarization of electronic devices, which are sensitive to temperature, grows apace, sensing of temperature with ever smaller probes is more important than ever. Genuinely quantum mechanical schemes of thermometry are thus expected to be cr
Weak values arise experimentally as conditioned averages of weak (noisy) observable measurements that minimally disturb an initial quantum state, and also as dynamical variables for reduced quantum state evolution even in the absence of measurement.
When a well-localized photon is incident on a spatially superposed absorber but is not absorbed, the photon can still deliver energy to the absorber. It is shown that when the transferred energy is small relative to the energy uncertainty of the phot
Increasing evidence suggests that, similar to face-to-face communications, human emotions also spread in online social media. However, the mechanisms underlying this emotion contagion, for example, whether different feelings spread in unlikely ways o