ﻻ يوجد ملخص باللغة العربية
The coupling of atomic and photonic resonances serves as an important tool for enhancing light-matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic-cladding wave guides, we experimentally demonstrate the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator. Specifically, we observed cavity-atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances. Moreover, we were able to significantly enhance the efficiency of all optical switching in the V-type pump-probe scheme. The coupled system of micro-ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, Purcell enhancement and bistability.
Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum netw
We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition o
The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz
We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2!S_{1/2}rightarrow 6^2!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed
Traditionally, measuring the center-of-mass (c.m.) velocity of an atomic ensemble relies on measuring the Doppler shift of the absorption spectrum of single atoms in the ensemble. Mapping out the velocity distribution of the ensemble is indispensable