ﻻ يوجد ملخص باللغة العربية
The IceCube neutrino discovery was punctuated by three showers with $E_ u$ ~ 1-2 PeV. Interest is intense in possible fluxes at higher energies, though a marked deficit of $E_ u$ ~ 6 PeV Glashow resonance events implies a spectrum that is soft and/or cutoff below ~few PeV. However, IceCube recently reported a through-going track event depositing 2.6 $pm$ 0.3 PeV. A muon depositing so much energy can imply $E_{ u_mu} gtrsim$ 10 PeV. We show that extending the soft $E_ u^{-2.6}$ spectral fit from TeV-PeV data is unlikely to yield such an event. Alternatively, a tau can deposit this much energy, though requiring $E_{ u_tau}$ ~10x higher. We find that either scenario hints at a new flux, with the hierarchy of $ u_mu$ and $ u_tau$ energies suggesting a window into astrophysical neutrinos at $E_ u$ ~ 100 PeV if a tau. We address implications, including for ultrahigh-energy cosmic-ray and neutrino origins.
The Glashow resonant scattering, $i.e$. ${overline{ u}^{}_{e} + e^{-} rightarrow W^{-} rightarrow text{anything}}$, offers us a possibility of disentangling $overline{ u}^{}_{e}$ from the total astrophysical neutrino fluxes. Meanwhile, a great number
Discovering neutrino decay would be strong evidence of physics beyond the Standard Model. Presently, there are only lax lower limits on the lifetime $tau$ of neutrinos, of $tau/m sim 10^{-3}$ s eV$^{-1}$ or worse, where $m$ is the unknown neutrino ma
Tau neutrinos with energies in the PeV-EeV range produce up-going extensive air showers (UEAS) if they interact underground close enough to the surface of the Earth. This work studies detectability of the UEAS with a system of fluorescence telescopes
Time domain astronomy has come of age with astronomers now able to monitor the sky at high cadence both across the electromagnetic spectrum and using neutrinos and gravitational waves. The advent of new observing facilities permits new science, but t
The excess of neutrino candidate events detected by IceCube from the direction of TXS 0506+056 has generated a great deal of interest in blazars as sources of high-energy neutrinos. In this study, we analyze the publicly available portion of the IceC