ﻻ يوجد ملخص باللغة العربية
The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV, assumed to be constructed in a new tunnel of 80-100 km circumference, includes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12-m-diameter inner bore with the central magnetic flux density of 6 T, in combination with two superconducting dipole magnets and two conventional toroid magnets is proposed for an FCC-hh experimental setup. The coil of 23.468 m length has seven 3.35-m-long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness and a 0.7-m-thick nose disk and four 0.6-m-thick end-cap disks each side. The outer diameter of the yoke is 17.7 m. The full length of the magnetic system is 62.6 m. The air gaps between the end-cap disks provide for the installation of the muon chambers up to an absolute pseudorapidity about 2.7. The superconducting dipole magnets provide measurement of charged particle momenta in the absolute pseudorapidity region greater than 3. The conventional forward muon spectrometer allows muon identification in the absolute pseudorapidity region from 2.7 to 5. The magnet is modeled with the program TOSCA from Cobham CTS Limited. The total current in the superconducting solenoid coil is 123 MA-turns; the stored energy is 41.8 GJ. The axial force acting on each end-cap is 450 MN. The stray field is 13.7 mT at a radius of 50 m from the coil axis, and 5.2 mT at a radius of 100 m. Many other parameters are presented and discussed.
The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superco
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free
The discovery of a SM Higgs boson at the LHC brought about great opportunity to investigate the feasibility of a Circular Electron Positron Collider (CEPC) operating at center-of-mass energy of $sim 240$ GeV, as a Higgs factory, with designed luminos
The international Future Circular Collider (FCC) study aims at a design of $pp$, $e^+e^-$, $ep$ colliders to be built in a new 100 km tunnel in the Geneva region. The $e^+e^-$ collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) an
Using the simulation framework of the SiD detector to study the Higgs -> mumu decay channel showed a considerable gain in signal significance could be achieved through an increase in charged particle momentum resolution. However more detailed simulat