ترغب بنشر مسار تعليمي؟ اضغط هنا

High accuracy position response calibration method for a micro-channel plate ion detector

410   0   0.0 ( 0 )
 نشر من قبل Ran Hong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an {em in situ} calibration mask, an accuracy of 8~$mu$m and a resolution of 85~$mu$m (FWHM) have been achieved for MeV-scale $alpha$ particles and ions with energies of $sim$10~keV. At this level of accuracy, the difference between the MCP position responses to high-energy $alpha$ particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear $beta$-decay experiment.

قيم البحث

اقرأ أيضاً

An improved method of energy calibration of position-sensitive silicon detector is presented. Instead of the parabolic function used in traditional method, a new function describing the relation of position and energy is introduced and achieves bette r energy resolution. For the 8.088 MeV alpha decay of 213Rn calibrated by this new method, the energy resolution is determined to be about 87 keV (FWHM), which is better than the result of the traditional method, 104 keV (FWHM). In addition, different functions can be tried in the new method, which makes the calibration of various detectors with different performances possible.
The spatial dependence of the timing performance of the R3809U-50 Micro-Channel-Plate PMT (MCP-PMT) by Hamamatsu was studied in high energy muon beams. Particle position information is provided by a GEM tracker telescope, while timing is measured rel ative to a second MCP-PMT, identical in construction. In the inner part of the circular active area (radius r$<$5.5,mm) the time resolution of the two MCP-PMTs combined is better than 10~ps. The signal amplitude decreases in the outer region due to less light reaching the photocathode, resulting in a worse time resolution. The observed radial dependence is in quantitative agreement with a dedicated simulation. With this characterization, the suitability of MCP-PMTs as $text{t}_text{0}$ reference detectors has been validated.
143 - V.Chiochia , E.Alagoz , M.Swartz 2006
In this paper a detailed simulation of irradiated pixel sensors was used to investigate the effects of radiation damage on charge sharing and position determination. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. We show that charge sharing functions extracted from the simulation can be parameterized as a function of the inter-pixel position and used to improve the position determination. For sensors irradiated to Phi=5.9x10^14 n/cm^2 a position resolution below 15 um can be achieved after calibration.
We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber fi lled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibilities for medical imaging, for example in mammography, portal imaging, radiography (including security devices), crystallography and many other applications.
212 - P. Abreu , S. Andringa , P. Assis 2017
A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placin g it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا