ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the Clenshaw-Curtis-Filon method for the highly oscillatory Bessel transform $int_0^1x^alpha (1-x)^beta f(x) J_{ u}(omega x)dx$, where $f$ is a smooth function on $[0, 1]$, and $ ugeq0.$ The method is based on Fast Fourier Transform (FFT) and fast computation of the modified moments. We give a recurrence relation for the modified moments and present an efficient method for the evaluation of modified moments by using recurrence relation. Moreover, the corresponding error bound in inverse powers of $N$ for this method for the integral is presented. Numerical examples are provided to support our analysis and show the efficiency and accuracy of the method.
We develop two classes of composite moment-free numerical quadratures for computing highly oscillatory integrals having integrable singularities and stationary points. The first class of the quadrature rules has a polynomial order of convergence and
We introduce a new strategy for coupling the parallel in time (parareal) iterative methodology with multiscale integrators. Following the parareal framework, the algorithm computes a low-cost approximation of all slow variables in the system using an
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of giv
This work settles the problem of constructing entropy stable non-oscillatory (ESNO) fluxes by framing it as a least square optimization problem. A flux sign stability condition is introduced and utilized to construct arbitrary order entropy stable fl
This paper focuses on finite-time in-network computation of linear transforms of distributed graph data. Finite-time transform computation problems are of interest in graph-based computing and signal processing applications in which the objective is