ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-hole configuration interaction and many-body perturbation theory: application to Hg+

107   0   0.0 ( 0 )
 نشر من قبل Julian Berengut
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. C. Berengut




اسأل ChatGPT حول البحث

The combination of configuration interaction and many-body perturbation theory methods (CI+MBPT) is extended to non-perturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir$^{17+}$, particle-hole excitations in noble gases, and difficult transitions such as the $6s rightarrow 5d^{-1}6s^2$ optical clock transition in Hg$^+$. We take the latter system as our test case for the method and obtain very good accuracy (~1%) for the low-lying transition energies. The $alpha$-dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time-dependence of the fine-structure constant.



قيم البحث

اقرأ أيضاً

We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t heory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wavefunction, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), and Cr2 dimer with up to a quadruple-zeta basis set with an active space of (12e, 190o). For these systems we were able to obtain better than 1 mHa accuracy with a wall time of merely 55 seconds, 37 seconds, and 56 minutes on 1, 1, and 4 nodes, respectively.
We describe the second version (v2.0.0) of the code ADG that automatically (1) generates all valid off-diagonal Bogoliubov many-body perturbation theory diagrams at play in particle-number projected Bogoliubov many-body perturbation theory (PNP-BMBPT ) and (2) evaluates their algebraic expression to be implemented for numerical applications. This is achieved at any perturbative order $p$ for a Hamiltonian containing both two-body (four-legs) and three-body (six-legs) interactions (vertices). All valid off-diagonal BMBPT diagrams of order $p$ are systematically generated from the set of diagonal, i.e., unprojected, BMBPT diagrams. The production of the latter were described at length in https://doi.org/10.1016/j.cpc.2018.11.023 dealing with the first version of ADG. The automated evaluation of off-diagonal BMBPT diagrams relies both on the application of algebraic Feynmans rules and on the identification of a powerful diagrammatic rule providing the result of the remaining $p$-tuple time integral. The new diagrammatic rule generalizes the one already identified in https://doi.org/10.1016/j.cpc.2018.11.023 to evaluate diagonal BMBPT diagrams independently of their perturbative order and topology. The code ADG is written in Python3 and uses the graph manipulation package NetworkX. The code is kept flexible enough to be further expanded throughout the years to tackle the diagrammatics at play in various many-body formalisms that already exist or are yet to be formulated.
Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Greens function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of ap proximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called one-point model) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Greens function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.
123 - J. P. Coe , M. J. Paterson 2013
Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from MP2 and QCISD in MCCI calculations of single-point energies. The efficiency and accuracy of approximate natural orbitals in MCCI potential curve calculations for the double hydrogen dissociation of water, the dissociation of carbon monoxide and the dissociation of the nitrogen molecule are then considered in comparison with standard MCCI when using full configuration interaction as a benchmark. We also use the method to produce a potential curve for water in an aug-cc-pVTZ basis. A new way to quantify the accuracy of a potential curve is put forward that takes into account all of the points and that the curve can be shifted by a constant. We adapt a second-order perturbation scheme to work with MCCI (MCCIPT2) and improve the efficiency of the removal of duplicate states in the method. MCCIPT2 is tested in the calculation of a potential curve for the dissociation of nitrogen using both Slater determinants and configuration state functions.
The connections between the Random Phase Approximation (RPA) and Many-Body Perturbation Theory (MBPT) and its all order generalisation, the Coupled- Cluster Theory (CCT) have been explored. Explicit expressions have been derived for the electric dipo le amplitudes for allowed and forbidden transitions induced by the parity non-conserving neutral weak interaction. The Goldstone diagrams associated with the RPA terms in both cases are shown to arise in MBPT and CCT and the numerical verification of this relationship is made for the allowed electric dipole transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا