ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Lp-quantiles for the Student t distribution

54   0   0.0 ( 0 )
 نشر من قبل Valeria Biignozzi
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

L_p-quantiles represent an important class of generalised quantiles and are defined as the minimisers of an expected asymmetric power function, see Chen (1996). For p=1 and p=2 they correspond respectively to the quantiles and the expectiles. In his paper Koenker (1993) showed that the tau quantile and the tau expectile coincide for every tau in (0,1) for a class of rescaled Student t distributions with two degrees of freedom. Here, we extend this result proving that for the Student t distribution with p degrees of freedom, the tau quantile and the tau L_p-quantile coincide for every tau in (0,1) and the same holds for any affine transformation. Furthermore, we investigate the properties of L_p-quantiles and provide recursive equations for the truncated moments of the Student t distribution.



قيم البحث

اقرأ أيضاً

Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article presents the first multi-resolution spatial model inspired by the skew-t distribution, where a large-scale effect follows a multivariate normal distribution and the fine-scale effects follow a multivariate skew-normal distributions. The resulting marginal distribution for each region is skew-t, thereby allowing for greater flexibility in capturing skewness and heavy tails characterizing many environmental datasets. Likelihood-based inference is performed using a Monte Carlo EM algorithm. The model is applied as a stochastic generator of daily wind speeds over Saudi Arabia.
In this paper the method of simulated quantiles (MSQ) of Dominicy and Veredas (2013) and Dominick et al. (2013) is extended to a general multivariate framework (MMSQ) and to provide a sparse estimator of the scale matrix (sparse-MMSQ). The MSQ, like alternative likelihood-free procedures, is based on the minimisation of the distance between appropriate statistics evaluated on the true and synthetic data simulated from the postulated model. Those statistics are functions of the quantiles providing an effective way to deal with distributions that do not admit moments of any order like the $alpha$-Stable or the Tukey lambda distribution. The lack of a natural ordering represents the major challenge for the extension of the method to the multivariate framework. Here, we rely on the notion of projectional quantile recently introduced by Hallin etal. (2010) and Kong Mizera (2012). We establish consistency and asymptotic normality of the proposed estimator. The smoothly clipped absolute deviation (SCAD) $ell_1$--penalty of Fan and Li (2001) is then introduced into the MMSQ objective function in order to achieve sparse estimation of the scaling matrix which is the major responsible for the curse of dimensionality problem. We extend the asymptotic theory and we show that the sparse-MMSQ estimator enjoys the oracle properties under mild regularity conditions. The method is illustrated and its effectiveness is tested using several synthetic datasets simulated from the Elliptical Stable distribution (ESD) for which alternative methods are recognised to perform poorly. The method is then applied to build a new network-based systemic risk measurement framework. The proposed methodology to build the network relies on a new systemic risk measure and on a parametric test of statistical dominance.
A new robust stochastic volatility (SV) model having Student-t marginals is proposed. Our process is defined through a linear normal regression model driven by a latent gamma process that controls temporal dependence. This gamma process is strategica lly chosen to enable us to find an explicit expression for the pairwise joint density function of the Student-t response process. With this at hand, we propose a composite likelihood (CL) based inference for our model, which can be straightforwardly implemented with a low computational cost. This is a remarkable feature of our Student-t SV process over existing SV models in the literature that involve computationally heavy algorithms for estimating parameters. Aiming at a precise estimation of the parameters related to the latent process, we propose a CL Expectation-Maximization algorithm and discuss a bootstrap approach to obtain standard errors. The finite-sample performance of our composite likelihood methods is assessed through Monte Carlo simulations. The methodology is motivated by an empirical application in the financial market. We analyze the relationship, across multiple time periods, between various US sector Exchange-Traded Funds returns and individual companies stock price returns based on our novel Student-t model. This relationship is further utilized in selecting optimal financial portfolios.
63 - Faicel Chamroukhi 2016
Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification, and clustering. For regression and cluster analyses of continuous data, MoE usually use normal experts following the Gaussian distribut ion. However, for a set of data containing a group or groups of observations with heavy tails or atypical observations, the use of normal experts is unsuitable and can unduly affect the fit of the MoE model. We introduce a robust MoE modeling using the $t$ distribution. The proposed $t$ MoE (TMoE) deals with these issues regarding heavy-tailed and noisy data. We develop a dedicated expectation-maximization (EM) algorithm to estimate the parameters of the proposed model by monotonically maximizing the observed data log-likelihood. We describe how the presented model can be used in prediction and in model-based clustering of regression data. The proposed model is validated on numerical experiments carried out on simulated data, which show the effectiveness and the robustness of the proposed model in terms of modeling non-linear regression functions as well as in model-based clustering. Then, it is applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained results show the usefulness of the TMoE model for practical applications.
127 - Faicel Chamroukhi 2016
Mixture of Experts (MoE) is a popular framework in the fields of statistics and machine learning for modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are usually based on the normal distribution. H owever, it is known that for data with asymmetric behavior, heavy tails and atypical observations, the use of the normal distribution is unsuitable. We introduce a new robust non-normal mixture of experts modeling using the skew $t$ distribution. The proposed skew $t$ mixture of experts, named STMoE, handles these issues of the normal mixtures experts regarding possibly skewed, heavy-tailed and noisy data. We develop a dedicated expectation conditional maximization (ECM) algorithm to estimate the model parameters by monotonically maximizing the observed data log-likelihood. We describe how the presented model can be used in prediction and in model-based clustering of regression data. Numerical experiments carried out on simulated data show the effectiveness and the robustness of the proposed model in fitting non-linear regression functions as well as in model-based clustering. Then, the proposed model is applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained results confirm the usefulness of the model for practical data analysis applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا