ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayes theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system

315   0   0.0 ( 0 )
 نشر من قبل Edward Young
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Edward D. Young




اسأل ChatGPT حول البحث

The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of molecular cloud solids.



قيم البحث

اقرأ أيضاً

104 - Edward D. Young 2014
Apparent excesses in early-solar $^{26}$Al, $^{36}$Cl, $^{41}$Ca, and $^{60}$Fe disappear if one accounts for ejecta from massive-star winds concentrated into dense phases of the ISM in star-forming regions. The removal of apparent excesses is eviden t when wind yields from Wolf-Rayet stars are included in the plot of radionuclide abundances vs. mean life. The resulting trend indicates that the solar radionuclides were inherited from parental molecular clouds with a characteristic residence time of 10$^8$ years. This residence time is of the same order as the present-day timescale for conversion of molecular cloud material into stars. The concentrations of these extinct isotopes in the early solar system need not signify injection from unusual proximal stellar sources, but instead are well explained by normal concentrations in average star-forming clouds. The results imply that the efficiency of capture is greater for stellar winds than for supernova ejecta proximal to star-forming regions.
Several short-lived radionuclides (SLRs) were present in the early solar system, some of which should have formed just prior to or soon after the solar system formation. Stellar nucleosynthesis has been proposed as the mechanism for production of SLR s in the solar system, but no appropriate stellar source has been found to explain the abundances of all solar system SLRs. In this study, we propose a faint supernova with mixing and fallback as a stellar source of SLRs with mean lives of <5 Myr (26Al, 41Ca, 53Mn, and 60Fe) in the solar system. In such a supernova, the inner region of the exploding star experiences mixing, a small fraction of mixed materials is ejected, and the rest undergoes fallback onto the core. The modeled SLR abundances agree well with their solar system abundances if mixing-fallback occurs within the C/O-burning layer. In some cases, the initial solar system abundances of the SLRs can be reproduced within a factor of 2. The dilution factor of supernova ejecta to the solar system materials is ~10E-4 and the time interval between the supernova explosion and the formation of oldest solid materials in the solar system is ~1 Myr. If the dilution occurred due to spherically symmetric expansion, a faint supernova should have occurred nearby the solar system forming region in a star cluster.
The abundances of 92Nb and 146Sm in the early Solar System are determined from meteoritic analysis and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion o f white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early Solar System and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires that the 92Nb/92Mo ratio in the early Solar System is at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the alpha-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ~10 Myr must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.
101 - Edward Young 2019
The relative abundances of the radionuclides in the solar system at the time of its birth are crucial arbiters for competing hypotheses regarding the birth environment of the Sun. The presence of short-lived radionuclides, as evidenced by their decay products in meteorites, has been used to suggest that particular, sometimes exotic, stellar sources were proximal to the Suns birth environment. The recent confirmation of neutron star - neutron star (NS-NS) mergers and associated kilonovae as potentially dominant sources of r-process nuclides can be tested in the case of the solar birth environment using the relative abundances of the longer-lived nuclides. Critical analysis of the 15 radionuclides and their stable partners for which abundances and production ratios are well known suggests that the Sun formed in a typical massive star-forming region (SFR). The apparent overabundances of short-lived radionuclides (e.g., $^{26} {rm Al}$, $^{41}{rm Ca}$, $^{36}{rm Cl}$) in the early solar system appears to be an artifact of a heretofore under-appreciation for the important influences of enrichment by Wolf-Rayet winds in SFRs. The long-lived nuclides (e.g., $^{238}{rm U}$, $^{244}{rm Pu}$, $^{247}{rm Cr}$, $^{129}{rm I}$) are consistent with an average time interval between production events of $10^8$ years, seemingly too short to be the products of NS-NS mergers alone. The relative abundances of all of these nuclides can be explained by their mean decay lifetimes and an average residence time in the ISM of $sim200$ Myr. This residence time evidenced by the radionuclides is consistent with the average lifetime of dust in the ISM and the timescale for converting molecular cloud mass to stars.
Over the past three decades, we have witnessed one of the great revolutions in our understanding of the cosmos - the dawn of the Exoplanet Era. Where once we knew of just one planetary system (the Solar system), we now know of thousands, with new sys tems being announced on a weekly basis. Of the thousands of planetary systems we have found to date, however, there is only one that we can study up-close and personal - the Solar system. In this review, we describe our current understanding of the Solar system for the exoplanetary science community - with a focus on the processes thought to have shaped the system we see today. In section one, we introduce the Solar system as a single well studied example of the many planetary systems now observed. In section two, we describe the Solar systems small body populations as we know them today - from the two hundred and five known planetary satellites to the various populations of small bodies that serve as a reminder of the systems formation and early evolution. In section three, we consider our current knowledge of the Solar systems planets, as physical bodies. In section four, we discuss the research that has been carried out into the Solar systems formation and evolution, with a focus on the information gleaned as a result of detailed studies of the systems small body populations. In section five, we discuss our current knowledge of planetary systems beyond our own - both in terms of the planets they host, and in terms of the debris that we observe orbiting their host stars. As we learn ever more about the diversity and ubiquity of other planetary systems, our Solar system will remain the key touchstone that facilitates our understanding and modelling of those newly found systems, and we finish section five with a discussion of the future surveys that will further expand that knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا