ﻻ يوجد ملخص باللغة العربية
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The asymmetry in the transitions is independent of applied magnetic fields and the activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behavior upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order magnetic phase transitions.
Magnetic imaging based on nitrogen-vacancy (NV) centers in diamond has emerged as a powerful tool for probing magnetic phenomena in fields ranging from biology to physics. A key strength of NV sensing is its local-probe nature, enabling high-resoluti
The phase coexistence present through a first-order phase transition means there will be finite regions between the two phases where the structure of the system will vary from one phase to the other, known as a phase boundary wall. This region is sai
The topological Hall effect is used extensively to study chiral spin textures in various materials. However, the factors controlling its magnitude in technologically-relevant thin films remain uncertain. Using variable temperature magnetotransport an
Using a double-pump pulse approach and laser-induced THz emission as an ultrafast amperemeter and magnetometer, we show that a femtosecond laser pulse generates ferromagnetic nuclei in a FeRh/Pt bilayer, i.e. these nuclei acquire a net magnetization
Critical behavior is very common in many fields of science and a wide variety of many-body systems exhibit emergent critical phenomena. The beauty of critical phase transitions lies in their scale-free properties, such that the temperature dependence