ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of high harmonics from silicon

410   0   0.0 ( 0 )
 نشر من قبل Giulio Vampa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.

قيم البحث

اقرأ أيضاً

The interaction of strong near-infrared (NIR) laser pulses with wide-bandgap dielectrics produces high harmonics in the extreme ultraviolet (XUV) wavelength range. These observations have opened up the possibility of attosecond metrology in solids, w hich would benefit from a precise measurement of the emission times of individual harmonics with respect to the NIR laser field. Here we show that, when high-harmonics are detected from the input surface of a magnesium oxide crystal, a bichromatic probing of the XUV emission shows a clear synchronization largely consistent with a semiclassical model of electron-hole recollisions in bulk solids. On the other hand, the bichromatic spectrogram of harmonics originating from the exit surface of the 200 $mu$m-thick crystal is strongly modified, indicating the influence of laser field distortions during propagation. Our tracking of sub-cycle electron and hole re-collisions at XUV energies is relevant to the development of solid-state sources of attosecond pulses.
Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. In this letter, we examine OAM from the recently discovered high-harmonic generation (HHG) in semiconducto r crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources. The solid state nature of the generation medium allows the possibility to tailor directly the radiation at the source of the emission and offers a substantial degree of freedom for spatial beam shaping. First, we verify the fundamental principle of the transfer and conservation of the OAM from the generation laser to the harmonics. Second, we create OAM beams by etching a spiral zone structure directly at the surface of a zinc oxide crystal. Such diffractive optics act on the generated harmonics and produces focused optical vortices with nanometer scale sizes that may have potential applications in nanoscale optical trapping and quantum manipulation.
On the basis of real-time ab initio calculations, we study the non-perturbative interaction of two-color laser pulses with MgO crystal in the strong field regime to generate isolated attosecond pulse from high-harmonic emissions from MgO crystal. In this regard, we examine the impact of incident pulse characteristics such as its shape, intensity, and ellipticity as well as the consequence of the crystal anisotropy on the emitted harmonics and their corresponding isolated attosecond pulses. Our calculations predict the creation of isolated attosecond pulses with a duration of ~ 300 attoseconds; in addition, using elliptical driving pulses, the generation of elliptical isolated attosecond pulses is shown. Our work prepares the path for all solid-state compact optical devices offering perspectives beyond traditional isolated attosecond pulse emitted from atoms.
This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmit ted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution detection in both spatial and temporal scales because of the addition of a new degree of freedom.
Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, this capability was available only at large-scale X-ray facilities such as synchrotrons. Here we demonstrate the first bright, phase-matched, extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to the linearly polarized high harmonic sources that have been used very successfully for ultrafast element-selective magneto-optic experiments. This work thus represents a critical advance that makes possible element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution, using tabletop-scale setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا