ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of fermionic atoms in a high-finesse optical resonator after a sudden switch on of the coupling between the atoms and the cavity. The atoms are additionally confined by optical lattices to a ladder geometry. The tunneling mechanism on a rung of a ladder is induced by a cavity assisted Raman process. At long times after the quantum quench the arising steady state can carry a chiral current. In this work we employ exact diagonalization techniques on small system sizes to study the dissipative attractor dynamics after the quench towards the steady state and deviations of the properties of the steady state from predictions obtained by adiabatically eliminating the cavity mode.
Using the adaptive time-dependent density matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discre
An optical-lattice quantum simulator is an ideal experimental platform to investigate non-equilibrium dynamics of a quantum many-body system, which is in general hard to simulate with classical computers. Here, we use our quantum simulator of the Bos
In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr