ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping dependence and electron-boson coupling in the ultrafast relaxation of hot electron populations in Ba(Fe_{1-x}Co_x)_2As_2

675   0   0.0 ( 0 )
 نشر من قبل Isabella Avigo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using femtosecond time- and angle-resolved photoemission spectroscopy we investigate the effect of electron doping on the electron dynamics in Ba(Fe_{1-x}Co_x)_2As_2 in a range of 0 < x < 0.15 at temperatures slightly above the Neel temperature. By analyzing the time-dependent photoemission intensity of the pump laser excited population as a function of energy, we found that the relaxation times at 0 < E-E_F < 0.2 eV are doping dependent and about 100 fs shorter at optimal doping than for overdoped and parent compounds. Analysis of the relaxation rates also reveals the presence of a pump fluence dependent step in the relaxation time at E-E_F = 200meV which we explain by coupling of the excited electronic system to a boson of this energy. We compare our results with static ARPES and transport measurements and find disagreement and agreement concerning the doping-dependence, respectively. We discuss the effect of the electron-boson coupling on the energy-dependent relaxation and assign the origin of the boson to a magnetic excitation.



قيم البحث

اقرأ أيضاً

The dependence of the superconducting gaps in epitaxial Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 leq x leq 0.15) was studied by means of point-contact Andreev-reflection spectroscopy. The normalized conductance curves were we ll fitted by using the 2D Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although the possible presence of gap anisotropies cannot be completely excluded. The amplitudes of the two gaps Delta_{S} and Delta_{L} show similar monotonic trends as a function of the local critical temperature T_{c}^{A} (measured in the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x is well correlated to the trend of the critical temperature, i.e. to the shape of the superconducting region in the phase diagram. When analyzed within a simple three-band Eliashberg model, this trend turns out to be compatible with a mechanism of superconducting coupling mediated by spin fluctuations, whose characteristic energy scales with T_{c} according to the empirical law Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength lambda_{tot}= 2.22 for x leq 0.10 (i.e. up to optimal doping) that slightly decreases to lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).
The thermal conductivity of electron-doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals is investigated below 200K, with an emphasis on the behavior near the magnetic and superconducting (T_c) transition temperatures. An enhancement of the in-plane thermal conductivity $kappa_{ab}$ is observed below T_c for all samples, with the greatest enhancement observed near optimal doping. The observed trends are consistent with the scattering of heat carriers by low-energy magnetic excitations. Upon entering the superconducting state, the formation of a spin-gap leads to reduced scattering and an enhancement in $kappa(T)$. Similarly, an enhancement of $kappa$ is observed for polycrystalline BaFe2As2 below the magnetic transition, and qualitative differences in $kappa(T)$ between single crystalline and polycrystalline BaFe2As2 are utilized to discuss anisotropic scattering. This study highlights how measuring $kappa$ near $T_c$ in novel superconductors can be useful as a means to probe the potential role of spin fluctuations.
480 - N. Xu , T. Qian , P. Richard 2012
We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ for a wide range of Ru concentrations (0.15 $leq$ emph{x} $leq$ 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.
We report a systematic study of structural and transport properties in single crystals of Ba(Fe_(1-x)Ru_x)_2As_2 for x ranging from 0 to 0.5. The isovalent substitution of Fe by Ru leads to an increase of the a parameter and a decrease of the c param eter, resulting in a strong increase of the AsFeAs angle and a decrease of the As height above the Fe planes. Upon Ru substitution, the magnetic order is progressively suppressed and superconductivity emerges for x > 0.15, with an optimal Tc ~ 20K at x = 0.35 and coexistence of magnetism and superconductivity between these two Ru contents. Moreover, the Hall coefficient RH which is always negative and decreases with temperature in BaFe2As2, is found to increase here with decreasing T and even change sign for x > 0.15. For x_Ru = 0.35, photo-emission studies have shown that the number of holes and electrons are similar with n_e = n_h ~ 0.11, that is twice larger than found in BaFe2As2 [1]. Using this estimate, we find that the transport properties of Ba(Fe_0.65Ru_0.35)_2As_2 can be accounted for by the conventional multiband description for a compensated semi-metal. In particular, our results show that the mobility of holes is strongly enhanced upon Ru addition and overcomes that of electrons at low temperature when x_Ru > 0.15.
Point contact spectroscopy reveals a gap-like feature above the magnetic and structural transition temperatures for underdoped $Ba(Fe_{1-x}Co_x)_2As_2$, $SrFe_2As_2$ and $Fe_{1+y}Te$. The conductance spectrum starts showing an enhancement at temperat ures as high as 177 K for $BaFe_2As_2$ ($T_N$ $sim$ 132 K) and 250 K for $SrFe_2As_2$ ($T_N$ $sim$ 192 K). Possible origins for this enhancement are discussed in light of recent experimental claims of nematicity in these materials. We construct a modified phase diagram for Co-doped Ba122 showing a gap-like feature existing above $T_N$ and $T_S$ for the underdoped regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا