ﻻ يوجد ملخص باللغة العربية
We analyze the problem of how different ground states associated to the same set of the Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained projecting two ground states in the same subset. Before the quench, regardless the particular choice of the subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum of the distinguishability shows an exponential decay in time. Hence, in the limit of very large time, all the informations about the particular initial ground state are lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the $XY$ model and $N$-cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only near
The $mathcal{PT}$-symmetric non-Hermitian systems have been widely studied and explored both in theory and in experiment these years due to various interesting features. In this work, we focus on the dynamical features of a triple-qubit system, one o
The flat bands in bilayer graphene(BLG) are sensitive to electric fields Ebot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5
We consider the rotational dynamics in an ensemble of globally coupled identical pendulums. This model is essentially a generalization of the standard Kuramoto model, which takes into account the inertia and the intrinsic nonlinearity of the communit
We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condense