ﻻ يوجد ملخص باللغة العربية
The short-lived $^{26}$Al and $^{60}$Fe radionuclides are synthesized and expelled in the interstellar medium by core-collapse supernova events. The solar systems first solids, calcium-aluminium refractory inclusions (CAIs), contain evidence for the former presence of the $^{26}$ Al nuclide defining the canonical $^{26}$Al/$^{27}$ Al ratio of $sim5 times10^{-5}$. A different class of objects temporally related to canonical CAIs are CAIs with fractionation and unidentified nuclear effects (FUN CAIs), which record a low initial $^{26}$Al/$^{27}$Al of $10^{-6}$. The contrasting level of $^{26}$Al between these objects is often interpreted as reflecting the admixing of the $^{26}$Al nuclide during the early formative phase of the Sun. We use giant molecular cloud (GMC) scale adaptive mesh-refinement numerical simulations to trace the abundance of $^{26}$Al and $^{60}$Fe in star-forming gas during the early stages of accretion of individual low mass protostars. We find that the $^{26}$Al/$^{27}$Al and $^{60}$Fe/$^{56}$Fe ratios of accreting gas within a vicinity of 1000 AU of the stars follow the predicted decay curves of the initial abundances at time of star formation without evidence of spatial or temporal heterogeneities for the first 100 kyr of star formation. Therefore, the observed differences in $^{26}$Al/$^{27}$Al ratios between FUN and canonical CAIs are likely not caused by admixing of supernova material during the early evolution of the proto-Sun. Selective thermal processing of dust grains is a more viable scenario to account for the heterogeneity in $^{26}$Al/$^{27}$Al ratios at the time of solar system formation.
Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolut
We use a time-dependent hydrodynamic code and a non-LTE Monte Carlo code to model disk dissipation for the Be star 66 Ophiuchi. We compiled 63 years of observations from 1957 to 2020 to encompass the complete history of the growth and subsequent diss
Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the $^{25}$Mg(p,$gamma$)$^{26}$Al reaction affect the production of radioactive $^{26}$Al$^{
We present the metallicity distribution function (MDF) for 24,270 G and 16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based on spectroscopy from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey
The early evolutionary stage of brown dwarfs are not very well characterized, specially during the embedded phase. To gain insight into the dominant formation mechanism of very low-mass objects and brown dwarfs, we conducted deep observations at 870$