ترغب بنشر مسار تعليمي؟ اضغط هنا

Probability distributions for directed polymers in random media with correlated noise

172   0   0.0 ( 0 )
 نشر من قبل Sherry Chu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The probability distribution for the free energy of directed polymers in random media (DPRM) with uncorrelated noise in $d=1+1$ dimensions satisfies the Tracy-Widom distribution. We inquire if and how this universal distribution is modified in the presence of spatially correlated noise. The width of the distribution scales as the DPRM length to an exponent $beta$, in good (but not full) agreement with previous renormalization group and numerical results. The scaled probability is well described by the Tracy-Widom form for uncorrelated noise, but becomes symmetric with increasing correlation exponent. We thus find a class of distributions that continuously interpolates between Tracy-Widom and Gaussian forms.



قيم البحث

اقرأ أيضاً

99 - Victor Dotsenko 2016
Zero temperature limit in (1+1) directed polymers with finite range correlated random potential is studied. In terms of the standard replica technique it is demonstrated that in this limit the considered system reveals the one-step replica symmetry b reaking structure similar to the one which takes place in the Random Energy Model. In particular, it is shown that at the temperature $T_{*} sim (u R)^{1/3}$ (where $u$ and $R$ are the strength and the correlation length of the random potential) there is a crossover from the high- to the low-temperature regime. Namely, in the high-temperature regime at $T >> T_{*}$ the model is equivalent to the one with the $delta$-correlated potential where the non-universal prefactor of the free energy is proportional to $T^{-2/3}$, while at $T << T_{*}$ this non-universal prefactor saturates at a finite (temperature independent) value.
76 - Victor Dotsenko 2016
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
136 - Victor Dotsenko 2017
This review is devoted to the detailed consideration of the universal statistical properties of one-dimensional directed polymers in a random potential. In terms of the replica Bethe ansatz technique we derive several exact results for different type s of the free energy probability distribution functions. In the second part of the review we discuss the problems which are still waiting for their solutions. Several mathematical appendices in the ending part of the review contain various technical details of the performed calculations.
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the di stribution is obtained over a large range of values, down to a probability density as small as $10^{-1000}$ in the tails. The short time behavior is investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations, showing a spectacular agreement with the analytical expressions. The flat and stationary initial conditions are studied in the full space, together with the droplet initial condition in the half-space.
In this paper we review some general properties of probability distributions which exibit a singular behavior. After introducing the matter with several examples based on various models of statistical mechanics, we discuss, with the help of such para digms, the underlying mathematical mechanism producing the singularity and other topics such as the condensation of fluctuations, the relationships with ordinary phase-transitions, the giant response associated to anomalous fluctuations, and the interplay with Fluctuation Relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا