ترغب بنشر مسار تعليمي؟ اضغط هنا

Supplement: Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up

54   0   0.0 ( 0 )
 نشر من قبل Leo Singer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a supplement to the Letter of Singer et al. (https://arxiv.org/abs/1603.07333), in which we demonstrated a rapid algorithm for obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm.

قيم البحث

اقرأ أيضاً

The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in s earching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGOs sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.
The Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo Collaborations Observing Run 3 has demanded the development of widely-applicable tools for gravitational wave follow-up. These tools must address the main challenges of the mult i-messenger era, namely covering large localisation regions and quickly identifying decaying transients. To address these challenges, we present a public web interface to assist astronomers in conducting galaxy-targeted follow-up of gravitational wave events by offering a fast and public list of targets post-gravitational wave trigger. After a gravitational wave trigger, the back-end galaxy retrieval algorithm identifies and scores galaxies based on the LIGO and Virgo computed probabilities and properties of the galaxies taken from the Galaxy List for the Advanced Detector Era (GLADE) V2 galaxy catalogue. Within minutes, the user can retrieve, download, and limit ranked galaxy lists from the web application. The algorithm and website have been tested on past gravitational wave events, and execution times have been analysed. The algorithm is being triggered automatically during Observing Run 3 and its features will be extended if needed. The web application was developed using the Python based Flask web framework. The web application is freely available and publicly accessible at gwtool.watchertelescope.ie.
We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact bin ary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgos first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 square degrees in 2015 to ~200 square degrees in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.
We present an overview of the SkyMapper optical follow-up program for gravitational-wave event triggers from the LIGO/Virgo observatories, which aims at identifying early GW170817-like kilonovae out to $sim 200$ Mpc distance. We describe our robotic facility for rapid transient follow-up, which can target most of the sky at $delta<+10deg $ to a depth of $i_mathrm{AB}approx 20$ mag. We have implemented a new software pipeline to receive LIGO/Virgo alerts, schedule observations and examine the incoming real-time data stream for transient candidates. We adopt a real-bogus classifier using ensemble-based machine learning techniques, attaining high completeness ($sim$98%) and purity ($sim$91%) over our whole magnitude range. Applying further filtering to remove common image artefacts and known sources of transients, such as asteroids and variable stars, reduces the number of candidates by a factor of more than 10. We demonstrate the system performance with data obtained for GW190425, a binary neutron star merger detected during the LIGO/Virgo O3 observing campaign. In time for the LIGO/Virgo O4 run, we will have deeper reference images allowing transient detection to $i_mathrm{AB}approx $21 mag.
We present the results of the optical follow-up, conducted by the TOROS collaboration, of gravitational wave events detected during the Advanced LIGO-Virgo second observing run (Nov 2016 -- Aug 2017). Given the limited field of view ($sim100arcmin$) of our observational instrumentation we targeted galaxies within the area of high localization probability that were observable from our sites. We analyzed the observations using difference imaging, followed by a Random Forest algorithm to discriminate between real and bogus transients. For all three events that we respond to, except GW170817, we did not find any bona fide optical transient that was plausibly linked with the observed gravitational wave event. Our observations were conducted using telescopes at Estaci{o}n Astrof{i}sica de Bosque Alegre, Cerro Tololo Inter-American Observatory, and the Dr. Cristina V. Torres Memorial Astronomical Observatory. Our results are consistent with the LIGO-Virgo detections of a binary black hole merger (GW170104) for which no electromagnetic counterparts were expected, as well as a binary neutron star merger (GW170817) for which an optical transient was found as expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا