ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Phase Smart Relaying and Cooperative Jamming in Secure Cognitive Radio Networks

97   0   0.0 ( 0 )
 نشر من قبل Pin-Hsun Lin
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate cooperative secure communications in a four-node cognitive radio network where the secondary receiver is treated as a potential eavesdropper with respect to the primary transmission. The secondary user is allowed to transmit his own signals under the condition that the primary users secrecy rate and transmission scheme are intact. Under this setting we derive the secondary users achievable rates and the related constraints to guarantee the primary users weak secrecy rate, when Gelfand-Pinsker coding is used at the secondary transmitter. In addition, we propose a multi-phase transmission scheme to include 1) the phases of the clean relaying with cooperative jamming and 2) the latency to successfully decode the primary message at the secondary transmitter. A capacity upper bound for the secondary user is also derived. Numerical results show that: 1) the proposed scheme can outperform the traditional ones by properly selecting the secondary users parameters of different transmission schemes according to the relative positions of the nodes; 2) the derived capacity upper bound is close to the secondary users achievable rate within 0.3 bits/channel use, especially when the secondary transmitter/receiver is far/close enough to the primary receiver/transmitter, respectively. Thereby, a smart secondary transmitter is able to adapt its relaying and cooperative jamming to guarantee primary secrecy rates and to transmit its own data at the same time from relevant geometric positions.

قيم البحث

اقرأ أيضاً

174 - Xuewen Wu , Jingxiao Ma , Zhe Xing 2021
This paper investigates the application of intelligent reflecting surface (IRS) in an underlay cognitive radio network (CRN), where a multi-antenna cognitive base station (CBS) utilizes spectrum assigned to the primary user (PU) to communicate with a secondary user (SU) via IRS in the presence of multiple coordinated eavesdroppers. To achieve the trade-off between the secrecy rate (SR) and energy consumption, we propose a secrecy energy efficiency (SEE) maximization scheme by jointly design the transmit beamforming at CBS and the reflect beamforming at IRS under the SR constraint of SU, the transmit power constraint of CBS, the limited interference temperature of PU and the unit modulus constraint of IRS. The problem is challenging to solve due to the coupled optimization variables and unit modulus constraint, for which an iterative alternating optimization algorithm is proposed. As for optimizing the reflect beamforming, we introduce an auxiliary variable and convert the original non-convex problem into a semi-definite programming with rank-1 constraint, and then propose an iterative penalty function based algorithm to implement the optimal reflect beamforming. As for optimizing the transmit beamforming, we convert the original problem into an equivalent subtractive form, which is further transformed into a convex function by employing the difference of two-convex functions method. Furthermore, we provide a second-order-cone-programming approximation approach to reduce the computational complexity. The effectiveness and superiority of our proposed algorithm are verified in the simulation results.
337 - Onur Dizdar , Bruno Clerckx 2021
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military co mmunication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).
Cognitive radio networks (CRNs) and millimeter wave (mmWave) communications are two major technologies to enhance the spectrum efficiency (SE). Considering that the SE improvement in the CRNs is limited due to the interference temperature imposed on the primary user (PU), and the severe path loss and high directivity in mmWave communications make it vulnerable to blockage events, we introduce an intelligent reflecting surface (IRS) into mmWave CRNs. This paper investigates the robust secure beamforming (BF) design in the IRS-assisted mmWave CRNs. By using a uniform linear array (ULA) at the cognitive base station (CBS) and a uniform planar array (UPA) at the IRS, and supposing that the imperfect channel state information (CSI) of wiretap links is known, we formulate a constrained problem to maximize the worst-case achievable secrecy rate (ASR) of the secondary user (SU) by jointly designing the transmit BF at the CBS and reflect BF at the IRS. To solve the non-convex problem with coupled variables, an efficient alternating optimization algorithm is proposed. As for the transmit BF at the CBS, we propose a heuristic robust transmit BF algorithm to attain the BF vectors analytically. As for the reflect BF at the IRS, by means of an auxiliary variable, we transform the non-convex problem into a semi-definite programming (SDP) problem with rank-1 constraint, which is handled with the help of an iterative penalty function, and then obtain the optimal reflect BF through CVX. Finally, the simulation results indicate that the ASR performance of our proposed algorithm has a small gap with that of the optimal solution with perfect CSI compared with the other benchmarks.
329 - Limeng Dong , Hui-Ming Wang , 2021
In this paper, an intelligent reflecting surface (IRS) assisted spectrum sharing underlay cognitive radio (CR) wiretap channel (WTC) is studied, and we aim at enhancing the secrecy rate of secondary user in this channel subject to total power constra int at secondary transmitter (ST), interference power constraint (IPC) at primary receiver (PR) as well as unit modulus constraint at IRS. Due to extra IPC and eavesdropper (Eve) are considered, all the existing solutions for enhancing secrecy rate of IRS-assisted non-CR WTC as well as enhancing transmission rate in IRS-assisted CR channel without eavesdropper fail in this work. Therefore, we propose new numerical solutions to optimize the secrecy rate of this channel under full primary, secondary users channel state information (CSI) and three different cases of Eves CSI: full CSI, imperfect CSI with bounded estimation error, and no CSI. Simulation results show that our proposed solutions for the IRS-assisted design greatly enhance the secrecy performance compared with the existing numerical solutions with and without IRS under full and imperfect Eves CSI. And positive secrecy rate can be achieved by our proposed AN aided approach given most channel realizations under no Eves CSI case so that secure communication also can be guaranteed. All of the proposed AO algorithms are guaranteed to monotonic convergence.
79 - Xiaobo Zhou , Jun Li , Feng Shu 2018
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin- level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا