ترغب بنشر مسار تعليمي؟ اضغط هنا

Eradicating Catastrophic Collapse in Interdependent Networks via Reinforced Nodes

411   0   0.0 ( 0 )
 نشر من قبل Xin Yuan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning once disconnected from the giant component. Here we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter$-$the functioning component$-$comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, we find that for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent ErdH{o}s-R{e}nyi (ER) networks, regular-random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NON). Our findings might yield insight for designing resilient interdependent infrastructure networks.



قيم البحث

اقرأ أيضاً

The functionality of nodes in a network is often described by the structural feature of belonging to the giant component. However, when dealing with problems like transport, a more appropriate functionality criterion is for a node to belong to the ne tworks backbone, where the flow of information and of other physical quantities (such as current) occurs. Here we study percolation in a model of interdependent resistor networks and show the effect of spatiality on their coupled functioning. We do this on a realistic model of spatial networks, featuring a Poisson distribution of link-lengths. We find that interdependent resistor networks are significantly more vulnerable than their percolation-based counterparts, featuring first-order phase transitions at link-lengths where the mutual giant component still emerges continuously. We explain this apparent contradiction by tracing the origin of the increased vulnerability of interdependent transport to the crucial role played by the dandling ends. Moreover, we interpret these differences by considering an heterogeneous $k$-core percolation process which enables to define a one-parameter family of functionality criteria whose constraints become more and more stringent. Our results highlight the importance that different definitions of nodes functionality have on the collective properties of coupled processes, and provide better understanding of the problem of interdependent transport in many real-world networks.
Many systems, ranging from engineering to medical to societal, can only be properly characterized by multiple interdependent networks whose normal functioning depends on one another. Failure of a fraction of nodes in one network may lead to a failure in another network. This in turn may cause further malfunction of additional nodes in the first network and so on. Such a cascade of failures, triggered by a failure of a small faction of nodes in only one network, may lead to the complete fragmentation of all networks. We introduce a model and an analytical framework for studying interdependent networks. We obtain interesting and surprising results that should significantly effect the design of robust real-world networks. For two interdependent Erdos-Renyi (ER) networks, we find that the critical average degree below which both networks collapse is <k_c>=2.445, compared to <k_c>=1 for a single ER network. Furthermore, while for a single network a broader degree distribution of the network nodes results in higher robustness to random failure, for interdependent networks, the broader the distribution is, the more vulnerable the networks become to random failure.
We investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We exten d an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems failure.
In many real network systems, nodes usually cooperate with each other and form groups, in order to enhance their robustness to risks. This motivates us to study a new type of percolation, group percolation, in interdependent networks under attacks. I n this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this novel group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with inter-similarity structures, which attract many attentions very recently, onto the group percolation and confirm the non-existence of continuous phase transitions.
Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it su ffers total breakdown. Here we introduce a recovery strategy of nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery $gamma$, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction $1-p$ of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane $gamma-p$ of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot avoid the system collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا