ﻻ يوجد ملخص باللغة العربية
Online retail is a visual experience- Shoppers often use images as first order information to decide if an item matches their personal style. Image characteristics such as color, simplicity, scene composition, texture, style, aesthetics and overall quality play a crucial role in making a purchase decision, clicking on or liking a product listing. In this paper we use a set of image features that indicate quality to predict product listing popularity on a major e-commerce website, Etsy. We first define listing popularity through search clicks, favoriting and purchase activity. Next, we infer listing quality from the pixel-level information of listed images as quality features. We then compare our findings to text-only models for popularity prediction. Our initial results indicate that a combined image and text modeling of product listings outperforms text-only models in popularity prediction.
The item details page (IDP) is a web page on an e-commerce website that provides information on a specific product or item listing. Just below the details of the item on this page, the buyer can usually find recommendations for other relevant items.
Predicting popularity, or the total volume of information outbreaks, is an important subproblem for understanding collective behavior in networks. Each of the two main types of recent approaches to the problem, feature-driven and generative models, h
This work investigates three methods for calculating loss for autoencoder-based pretraining of image encoders: The commonly used reconstruction loss, the more recently introduced deep perceptual similarity loss, and a feature prediction loss proposed
Recent advancements in deep neural networks have made remarkable leap-forwards in dense image prediction. However, the issue of feature alignment remains as neglected by most existing approaches for simplicity. Direct pixel addition between upsampled
In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are