ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectroscopic study of the Globular Cluster NGC 4147

81   0   0.0 ( 0 )
 نشر من قبل Sandro Villanova
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium and high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H]=-1.84+-0.02 and an alpha-enhancement of +0.38+-0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular we found a Na-O anti-correlation and Na-Al correlation. The cluster contains only 15% of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic Halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. A anti-relation between the light s-process element Y and Na may also be present.

قيم البحث

اقرأ أيضاً

With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions ( PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalogue will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is $sim$14.3 years. To standardize the $BVI$ photometry, Stetsons secondary standard stars are used. The CCD data with an epoch gap of $sim$14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than $sim$0.8 mas~yr$^{-1}$ for stars having $V<$18 mag that increases up to $sim$1.5 mas~yr$^{-1}$ for stars with $18<V<20$ mag. Kinematic membership probabilities are calculated using proper motions for stars brighter than $Vsim$20 mag. An electronic catalogue of positions, relative PMs, $BVI$ magnitudes and membership probabilities in $sim$19.7$times$17 arcmin$^2$ region of NGC 3201 is presented. We use our membership catalogue to identify probable cluster members among the known variables and $X$-ray sources in the direction of NGC 3201.
We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, A l, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H]=-1.29+-0.01 and an alpha-enhancement of +0.34+-0.01 (errors on the mean), typical of Halo Globular Clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anticorrelation with Al with a significance of 3 sigma. The cluster shows a Na-O anticorrelation and a Na-Al correlation. This correlation is not linear but segmented and that the stars are not distributed continuously, but form at least 3 well separated sub-populations. In this aspect M28 resembles NGC~2808 that was found to host at least 5 sub-populations. The presence of a Mg-Al anticorrelation favor massive AGB stars as the main polluters responsible for the multiple-population phenomenon.
Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individ ual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($Rsim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/Fe]=0.29pm0.18$ dex, $[Mg/Fe]=0.23pm0.10$ dex, $[Si/Fe]=0.36pm0.05$ dex, and $[Ca/Fe]=0.30pm0.07$ dex. Similar overabundance is found for the iron-peak Ti with $[Ti/Fe]=0.24pm0.09$ dex. Odd-Z elements Na and Al present abundances of $[Na/Fe]=0.00pm0.21$ dex and $[Al/Fe]=0.31pm0.21$ dex, respectively. Finally, the s-element Ba is also enhanced by $[Ba/Fe]=0.22pm0.21$ dex. The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.
In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.
We present the UV photometry of the globular cluster NGC 1261 using images acquired with the Ultraviolet Imaging Telescope (UVIT) on-board ASTROSAT. We performed PSF photometry on four near-UV (NUV) and two far-UV (FUV) images and constructed UV colo ur-magnitude diagrams (CMDs), in combination with HST, Gaia, and ground-based optical photometry for member stars. We detected the full horizontal branch (HB) in NUV, blue HB in the FUV and identified two extreme HB (EHB) stars. HB stars have a tight sequence in UV-optical CMDs well-fitted with isochrones generated (12.6 Gyr age, [Fe/H] = -1.27 metallicity) using updated BaSTI-IAC models. Effective temperatures (Teff), luminosities and radii of bright HB stars were estimated using spectral energy distribution. As we detect the complete sample of UV bright HB stars, the hot end of the HB distribution is found to terminate at the G-jump (Teff ~ 11500 K). The two EHB stars, fitted well with single spectra, have Teff= 31,000 K and a mass = 0.495Msun and follow the same Teff-Radius relation of the blue HB stars. We constrain the formation pathways of these EHB stars to extreme mass loss in the RGB phase (either due to rotation or enhanced Helium), OR early hot-flash scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا