ترغب بنشر مسار تعليمي؟ اضغط هنا

Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering

137   0   0.0 ( 0 )
 نشر من قبل Thomas Devereaux
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and non-resonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom -- the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usual through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting ones ability to quantitively characterize the coupling. Here we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an 8-band model of copper oxides, we study the contributions from the lowest order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross-section as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and non-resonant x-ray scattering, as well as Raman and infrared conductivity.



قيم البحث

اقرأ أيضاً

We report the observation of multiple phonon satellite features in ultra thin superlattices of form $n$SrIrO$_3$/$m$SrTiO$_3$ using resonant inelastic x-ray scattering. As the values of $n$ and $m$ vary the energy loss spectra show a systematic evolu tion in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-phonon coupling strength as a function of $n$ and $m$. Combined with the negligible carrier doping into the SrTiO$_3$ layers, these results indicate that tuning of the electron-phonon coupling can be effectively decoupled from doping. This work showcases both a feasible method to extract the electron-phonon coupling in superlattices and unveils a potential route for tuning this coupling which is often associated with superconductivity in SrTiO$_3$-based systems.
388 - F. Vernay , B. Moritz , I. Elfimov 2007
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copp er 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
The control and detection of crystallographic chirality is an important and challenging scientific problem. Chirality has wide ranging implications from medical physics to cosmology including an intimate but subtle connection in magnetic systems, for example Mn$_{1-x}$Fe$_{x}$Si. X-ray diffraction techniques with resonant or polarized variations of the experimental setup are currently utilized to characterize lattice chirality. We demonstrate using theoretical calculations the feasibility of indirect $K$ -edge bimagnon resonant inelastic X-ray scattering (RIXS) spectrum as a viable experimental technique to distinguish crystallographic handedness. We apply spin wave theory to the recently discovered $sqrt {5}timessqrt {5}$ vacancy ordered chalcogenide Rb$_{0.89}$Fe$_{1.58}$Se$_{2}$ for realistic X-ray experimental set up parameters (incoming energy, polarization, and Bragg angle) to show that the computed RIXS spectrum is sensitive to the underlying handedness (right or left) of the lattice. A Flack parameter definition that incorporates the right- and left- chiral lattice RIXS response is introduced. It is shown that the RIXS response of the multiband magnon system RbFeSe arises both from inter- and intra- band scattering processes. The extinction or survival of these RIXS peaks are sensitive to the underlying chiral lattice orientation. This in turn allows for the identification of the two chiral lattice orientations.
Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-energy collective excitations in materials. RIXS is a powerful probe, which often requires sophisticated theoretical descriptions to interpret the data. In particu lar, the need for accurate theories describing the influence of electron-phonon ($e$-p) coupling on RIXS spectra is becoming timely, as instrument resolution improves and this energy regime is rapidly becoming accessible. To date, only rather exploratory theoretical work has been carried out for such problems. We begin to bridge this gap by proposing a versatile variational approximation for calculating RIXS spectra in weakly doped materials, for a variety of models with diverse $e$-p couplings. Here, we illustrate some of its potential by studying the role of electron mobility, which is completely neglected in the widely used local approximation based on Lang-Firsov theory. Assuming that the electron-phonon coupling is of the simplest, Holstein type, we discuss the regimes where the local approximation fails, and demonstrate that its improper use may grossly textit{underestimate} the $e$-p coupling strength.
To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfe r, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a correlated metal in an unbiased fashion. Through comparison of measurements and calculations that tune the incident photon energy over a wide portion of the Fe L$_3$ absorption resonance of the example material BaFe$_2$As$_2$, we show that the RIXS response in BaFe$_2$As$_2$ is dominated by the direct channel contribution, including the Raman-like response below threshold, which we explain as a consequence of the finite core-hole lifetime broadening. Calculations are initially performed within the first-principles Bethe-Salpeter framework, which we then significantly improve by convolution with an effective spectral function for the intermediate-state excitation. We construct this spectral function, also from first-principles, by employing the cumulant expansion of the Greens function and performing a real-time time dependent density functional theory calculation of the response of the electronic system to the perturbation of the intermediate-state excitation. Importantly, this allows us to evaluate the indirect RIXS response from first-principles, accounting for the full periodicity of the crystal structure and with dependence on the momentum transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا