ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement, excitations and correlation effects in narrow zigzag graphene nanoribbons

105   0   0.0 ( 0 )
 نشر من قبل Imre Hagymasi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the low-lying excitation spectrum and ground-state properties of narrow graphene nanoribbons with zigzag edge configurations. Nanoribbons of comparable widths have been synthesized very recently [P. Ruffieux, emph{et al.} Nature textbf{531}, 489 (2016)], and their descriptions require more sophisticated methods since in this regime conventional methods, like mean-field or density-functional theory with local density approximation, fail to capture the enhanced quantum fluctuations. Using the unbiased density-matrix renormalization group algorithm we calculate the charge gaps with high accuracy for different widths and interaction strengths and compare them with mean-field results. It turns out that the gaps are much smaller in the former case due to the proper treatment of quantum fluctuations. Applying the elements of quantum information theory we also reveal the entanglement structure inside a ribbon and examine the spectrum of subsystem density matrices to understand the origin of entanglement. We examine the possibility of magnetic ordering and the effect of magnetic field. Our findings are relevant for understanding the gap values in different recent experiments and the deviations between them.



قيم البحث

اقرأ أيضاً

We perform projective quantum Monte Carlo simulations of zigzag graphene nanoribbons within a realistic model with long-range Coulomb interactions. Increasing the relative strength of nonlocal interactions with respect to the on-site repulsion does n ot generate a phase transition but has a number of nontrivial effects. At the single-particle level we observe a marked enhancement of the Fermi velocity at the Dirac points. At the two-particle level, spin- and charge-density-wave fluctuations compete. As a consequence, the edge magnetic moment is reduced but the edge dispersion relation increases in the sense that the single-particle gap at momentum $q=pi/|{pmb a}_1|$ grows. We attribute this to nonlocal charge fluctuations which assist the spin fluctuations to generate the aforementioned gap. In contrast, the net result of the interaction-induced renormalization of different energy scales is a constant spin-wave velocity of the edge modes. However, since the particle-hole continuum is shifted to higher energies---due to the renormalization of the Fermi velocity---Landau damping is reduced. As a result, a roughly linear spin-wave-like mode at the edge spreads out through a larger part of the Brillouin zone.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge- missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These bite defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to bite defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons.
We investigate the transport properties of pristine zigzag-edged borophene nanoribbons (ZBNRs) of different widths, using the fist-principles calculations. We choose ZBNRs with widths of 5 and 6 as odd and even widths. The differences of the quantum transport properties are found, where even-N BNRs and odd-N BNRs have different current-voltage relationships. Moreover, the negative differential resistance (NDR) can be observed within certain bias range in 5-ZBNR, while 6-ZBNR behaves as metal whose current rises with the increase of the voltage. The spin filter effect of 36% can be revealed when the two electrodes have opposite magnetization direction. Furthermore, the magnetoresistance effect appears to be in even-N ZBNRs, and the maximum value can reach 70%.
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th ne arest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.
The occurrence of superconducting and insulating phases is well-established in twisted graphene bilayers, and they have also been reported in other arrangements of graphene layers. We investigate three such arrangements: untwisted AB bilayer graphene on an hBN substrate, two graphene bilayers twisted with respect to each other, and a single ABC stacked graphene trilayer on an hBN substrate. Narrow bands with different topology occur in all cases, producing a high density of states which enhances the role of interactions. We investigate the effect of the long range Coulomb interaction, treated within the self consistent Hartree-Fock approximation. We find that the on-site part of the Fock potential strongly modifies the band structure at charge neutrality. The Hartree part does not significantly modify the shape and width of the bands in the three cases considered here, in contrast to the effect that such a potential has in twisted bilayer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا