ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments

70   0   0.0 ( 0 )
 نشر من قبل Nathalie Carrasco
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the Cassini Spacecraft and the Huygens lander provided numerous information about Titan atmospheric chemistry and the formation of its aerosols, the exact composition of these aerosols still remains unknown. A fruitful proxy to investigate these aerosols is the use of laboratory experiments that allow producing and studying analogs of Titan aerosol, the so35 called tholins. Even when produced in the laboratory, unveiling the exact composition of the aerosol remains problematic due to the high complexity of the material. Numerous advances have been recently made using high-resolution mass spectrometry (HRMS) (Pernot et al. 2010, Somogyi et al. 2012, Gautier et al. 2014) that allowed the separation of isobaric compounds and a robust identification of chemical species composing tholins regarding their molecular formulae. Nevertheless isomeric species cannot be resolved by a simple mass measurement. We propose here an analysis of tholins by high performance liquid chromatography (HPLC) coupled to HRMS to unveil this isomeric ambiguity for some of the major tholins compounds. By comparing chromatograms obtained when analyzing tholins and chemical standards, we strictly identified seven molecules in our tholins samples: melamine, cyanoguanidine, 6-methyl-1,3,5-triazine-2,4-diamine, 2,4,6-triaminopyrimidine, 3-amino- 1,2,4-triazole, 3,5-Dimethyl-1,2,4-triazole and 2,4-diamino-1,3,5-triazine. Several molecules, including hexamethylenetriamine (HMT) were not present at detectable levels in our sample. The use for the first time of a coupled HPLC-HRMS technique applied to tholins study demonstrated the interest of such a technique compared to single high-resolution mass spectrometry for the study of tholins composition.



قيم البحث

اقرأ أيضاً

We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30$,$ telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitro gen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H$_2$ is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.
100 - C. Codella , L. Podio , F. Fontani 2014
Molecular complexity builds up at each step of the Sun-like star formation process, starting from simple molecules and ending up in large polyatomic species. Complex organic molecules (COMs; such as methyl formate, HCOOCH$_3$, dymethyl ether, CH$_3$O CH$_3$, formamide, NH$_2$CHO, or glycoaldehyde, HCOCH$_2$OH) are formed in all the components of the star formation recipe (e.g. pre-stellar cores, hot-corinos, circumstellar disks, shocks induced by fast jets), due to ice grain mantle sublimation or sputtering as well as gas-phase reactions. Understanding in great detail the involved processes is likely the only way to predict the ultimate molecular complexity reached in the ISM, as the detection of large molecules is increasingly more difficult with the increase of the number of atoms constituting them. Thanks to the recent spectacular progress of astronomical observations, due to the Herschel (sub-mm and IR), IRAM and SMA (mm and sub-mm), and NRAO (cm) telescopes, an enormous activity is being developed in the field of Astrochemistry, extending from astronomical observatories to chemical laboratories. We are involved in several observational projects providing unbiased spectral surveys (in the 80-300 and 500-2000 GHz ranges) with unprecedented sensitivity of templates of dense cores and protostars. Forests of COM lines have been detected. In this chapter we will focus on the chemistry of both cold prestellar cores and hot shocked regions, (i) reviewing results and open questions provided by mm-FIR observations, and (ii) showing the need of carrying on the observations of COMs at lower frequencies, where SKA will operate. We will also emphasize the importance of analysing the spectra by the light of the experimental studies performed by our team, who is investigating the chemical effects induced by ionising radiation bombarding astrophysically relevant ices.
Since the start of ALMA observatory operation, new and important chemistry of infrared cold core was revealed. Molecular transitions at millimeter range are being used to identify and to characterize these sources. We have investigated the 231 GHz AL MA archive observations of the infrared dark cloud region C9, focusing on the brighter source that we called as IRDC-C9 Main. We report the existence of two sub-structures on the continuum map of this source: a compact bright spot with high chemistry diversity that we labelled as core, and a weaker and extended one, that we labelled as tail. In the core, we have identified lines of the molecules OCS(19-18), $^{13}$CS(5-4) and CH$_{3}$CH$_{2}$CN, several lines of CH$_{3}$CHO and the k-ladder emission of $^{13}$CH$_{3}$CN.We report two different temperature regions: while the rotation diagram of CH$_{3}$CHO indicates a temperature of 25 K, the rotation diagram of $^{13}$CH$_{3}$CN indicates a warmer phase at temperature of $sim450$K. In the tail, only the OCS(19-18) and $^{13}$CS(5-4) lines were detected. We used the $Nautilus$ and the textsc{Radex} codes to estimate the column densities and the abundances. The existence of hot gas in the core of IRDC-C9 Main suggests the presence of a protostar, which is not present in the tail.
248 - Catherine Walsh 2014
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai n the achievable chemical complexity and predict species and transitions which may be observable with ALMA. We have coupled a 2D model of a protoplanetary disk around a T Tauri star with a gas-grain chemical network including COMs. We compare compare synthesised line intensities and calculated column densities with observations and determine those COMs which may be observable in future. COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances 1e-6 - 1e-4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, 1e-12 - 1e-7. Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards several T Tauri star-disk systems. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Suns natal disk.
The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at mil limetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 ($sim$ 1 mm) and Band 5 ($sim$ 2 mm) are studied at $sim$ 0.5 resolution, complemented by Band 3 ($sim$ 3 mm) data in a $sim$ 2.5 beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species ($sim$ 100 $sim$ 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا