ﻻ يوجد ملخص باللغة العربية
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size in the temporal direction Nt=6, 8 and 12 and extrapolate the results to the continuum limit. We also investigate the spatial volume dependence. The energy density and pressure are evaluated by the derivative method with non-perturabative anisotropy coefficients. We adopt a multi-point reweighting method to determine the anisotropy coefficients. We confirm that the anisotropy coefficients approach the perturbative values as Nt increases. We find that the pressure gap vanishes at all values of Nt when the non-perturbative anisotropy coefficients are used. The spatial volume dependence in the latent heat is found to be small on large lattices. Performing extrapolation to the continuum limit, we obtain $ Delta epsilon/T^4 = 0.75 pm 0.17 $ and $ Delta (epsilon -3 p)/T^4 = 0.623 pm 0.056.$
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size
We study latent heat and the pressure gap between the hot and cold phases at the first-order deconfining phase transition temperature of the SU(3) Yang-Mills theory. Performing simulations on lattices with various spatial volumes and lattice spacings
We study energy gap (latent heat) between the hot and cold phases at the first order phase transition point of the SU(3) gauge theory. Performing simulations on lattices with various spatial volumes and lattice spacings, we calculate the energy gap b
We show that the nature of the topological fluctuations in $SU(3)$ gauge theory changes drastically at the finite temperature phase transition. Starting from temperatures right above the phase transition topological fluctuations come in well separate
Incorporated with twisted boundary condition, Polyakov loop correlators can give a definition of the renormalized coupling. We employ this scheme for the step scaling method (with step size s = 2) in the search of conformal fixed point of SU(3) gauge