ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental creation of superposition of unknown photonic quantum states

139   0   0.0 ( 0 )
 نشر من قبل Yong-Sheng Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As one of the most intriguing intrinsic properties of quantum world, quantum superposition provokes great interests in its own generation. Oszmaniec [Phys. Rev. Lett. 116, 110403 (2016)] have proven that though a universal quantum machine that creates superposition of arbitrary two unknown states is physically impossible, a probabilistic protocol exists in the case of two input states have nonzero overlaps with the referential state. Here we report a heralded quantum machine realizing superposition of arbitrary two unknown photonic qubits as long as they have nonzero overlaps with the horizontal polarization state $|Hrangle$. A total of 11 different qubit pairs are chosen to test this protocol by comparing the reconstructed output state with theoretical expected superposition of input states. We obtain the average fidelity as high as 0.99, which shows the excellent reliability of our realization. This realization not only deepens our understanding of quantum superposition but also has significant applications in quantum information and quantum computation, e.g., generating non-classical states in the context of quantum optics and realizing information compression by coherent superposition of results of independent runs of subroutines in a quantum computation.



قيم البحث

اقرأ أيضاً

We propose a novel protocol for the creation of macroscopic quantum superposition (MQS) states based on a measurement of a non-monotonous function of a quantum collective variable. The main advantage of this protocol is that it does not require switc hing on and off nonlinear interactions in the system. We predict this protocol to allow the creation of multiatom MQS by measuring the number of atoms coherently outcoupled from a two-component (spinor) Bose-Einstein condensate.
65 - K. Deasy , Th. Busch , Y. Niu 2006
We present a method for the controlled and robust generation of spatial superposition states of single atoms in micro-traps. Using a counter-intuitive positioning sequence for the individual potentials and appropriately chosen trapping frequencies, w e show that it is possible to selectively create two different orthogonal superposition states, which can in turn be used for quantum information purposes.
Quantum entanglement is one of the most important resources in quantum information. In recent years, the research of quantum entanglement mainly focused on the increase in the number of entangled qubits or the high-dimensional entanglement of two par ticles. Compared with qubit states, multipartite high-dimensional entangled states have beneficial properties and are powerful for constructing quantum networks. However, there are few studies on multipartite high-dimensional quantum entanglement due to the difficulty of creating such states. In this paper, we experimentally prepared a multipartite high-dimensional state $|Psi_{442}rangle=frac{1}{2}(|000rangle+|110rangle+|221rangle+|331rangle)$ by using the path mode of photons. We obtain the fidelity $F=0.854pm0.007$ of the quantum state, which proves a real multipartite high-dimensional entangled state. Finally, we use this quantum state to demonstrate a layered quantum network in principle. Our work highlights another route towards complex quantum networks.
Using only linear optical elements, the creation of dual-rail photonic entangled states is inherently probabilistic. Known entanglement generation schemes have low success probabilities, requiring large-scale multiplexing to achieve near-deterministi c operation of quantum information processing protocols. In this paper, we introduce multiple techniques and methods to generate photonic entangled states with high probability, which have the potential to reduce the footprint of Linear Optical Quantum Computing (LOQC) architectures drastically. Most notably, we are showing how to improve Bell state preparation from four single photons to up to p=2/3, boost Type-I fusion to 75% with a dual-rail Bell state ancilla and improve Type-II fusion beyond the limits of Bell state discrimination.
213 - F. Ziesel , T. Ruster , A. Walther 2012
We create displaced number states, which are nonclassical generalizations of coherent states, of a vibrational mode of a single trapped ion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا