ﻻ يوجد ملخص باللغة العربية
We discuss the superfluid properties of a Bose-Einstein condensed gas with spin-orbit coupling, recently realized in experiments. We find a finite normal fluid density $rho_n$ at zero temperature which turns out to be a function of the Raman coupling. In particular, the entire fluid becomes normal at the transition point from the zero momentum to the plane wave phase, even though the condensate fraction remains finite. We emphasize the crucial role played by the gapped branch of the elementary excitations and discuss its contributions to various sum rules. Finally, we prove that an independent definition of superfluid density $rho_s$, using the phase twist method, satisfies the equality $rho_n+rho_s=rho$, the total density, despite the breaking of Galilean invariance.
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO coupled Bose-Einstein condensate (BEC
A spin-orbit coupled two-dimensional (2D) Bose gas is shown to simultaneously possess quasi and true long-range order in the total and relative phase sectors, respectively. The total phase undergoes a Berenzinskii- Kosterlitz-Thouless transition to a
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, u
Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by th
Phases of matter are conventionally characterized by order parameters describing the type and degree of order in a system. For example, crystals consist of spatially ordered arrays of atoms, an order that is lost as the crystal melts. Like- wise in f