ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak coupling of pseudoacoustic phonons and magnon dynamics in incommensurate spin ladder compound Sr14Cu24O41

293   0   0.0 ( 0 )
 نشر من قبل Xi Chen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intriguing lattice dynamics has been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states, and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.

قيم البحث

اقرأ أيضاً

73 - Emilio Lorenzo 2014
We report the direct observation by inelastic neutron scattering experiments of a spin triplet of magnetic excitations in the response associated with the ladders in the composite cuprate Sr14Cu24O41. This appears as a peak at q_{Q1D}=pi and energy D elta_1=32.5 meV, and we conjecture that all the triplets making up this conspicuous peak have the same phase and therefore interpret it as the signature of the occurrence of quantum coherence along the ladder direction between entangled spin pairs. From the comparison with previous neutron and x-ray data, we conclude that the temperature evolution of this mode is driven by the crystallization of holes into a charge density wave in the ladder sublattice
The strong spin-spin exchange interaction in some low-dimensional magnetic materials can give rise to a high group velocity and thermal conductivity contribution from magnons. One example is the incommensurate layered compounds (Sr,Ca,La)14Cu24O41. T he effects of grain boundaries and defects on quasi-one-dimensional magnon transport in these compounds are not well understood. Here we report the microstructures and anisotropic thermal transport properties of textured Sr14Cu24O41, which are prepared by solid-state reaction followed by spark plasma sintering. Transmission electron microscopy clearly reveals nano-layered grains and the presence of dislocations and planar defects. The thermal conductivity contribution and mean free paths of magnons in the textured samples are evaluated with the use of a kinetic model for one-dimensional magnon transport, and found to be suppressed significantly as compared to single crystals at low temperatures. The experimental results can be explained by a one-dimensional magnon-defect scattering model, provided that the magnon-grain boundary scattering mean free path in the anisotropic magnetic structure is smaller than the average length of these nano-layers along the c axis. The finding suggests low transmission coefficients for magnons across grain boundaries.
We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy and linewidth of the magnon resonance in IPA-Cu(Cl$_{0.95}$Br$_{0.05}$)$_3$, a model spin-1/2 ladder antiferromagnet where Br substitution induces bond randomness. We find that the bond defects induce a blueshift, $delta Delta$, and broadening, $delta Gamma$, of the magnon gap excitation compared to the pure compound. At temperatures exceeding the energy scale of the inter-ladder exchange interactions, $delta Delta$ and $delta Gamma$ are temperature independent within the experimental error, in agreement with Matthiessens rule according to which magnon-defect scattering yields a temperature independent contribution to the magnon mean free path. Upon cooling, $delta Delta$ and $delta Gamma$ become temperature dependent and saturate at values lower than those observed at higher temperature, consistent with the crossover from one-dimensional to two-dimensional spin correlations with decreasing temperature previously observed in pure IPA-CuCl$_3$. These results indicate limitations in the applicability of Matthiessens rule for magnon scattering in low-dimensional magnets.
We experimentally study the magnon-photon coupling in a system consitsing of the compensating ferrimagnet gadolinium iron garnet (GdIG) and a three-dimensional microwave cavity. The temperature is varied in order to tune the GdIG magnetization and to observe the transition from the weak coupling regime to the strong coupling regime. By measuring and modelling the complex reflection parameter of the system the effective coupling rate g eff and the magnetization M eff of the sample are extracted. Comparing g eff with the magnon and the cavity decay rate we conclude that the strong coupling regime is easily accessible using GdIG. We show that the effective coupling strength follows the predicted square root dependence on the magnetization.
129 - Wei He , Z. K. Xie , Rui Sun 2021
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. H ere we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا