ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic Imaging with Atomic Magnetometers: A Novel Approach to Security and Surveillance

68   0   0.0 ( 0 )
 نشر من قبل Luca Marmugi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe our research programme on the use of atomic magnetometers to detect conductive objects via electromagnetic induction. The extreme sensitivity of atomic magnetometers at low frequencies, up to seven orders of magnitude higher than a coil-based system, permits deep penetration through different media and barriers, and in various operative environments. This eliminates the limitations usually associated with electromagnetic detection.

قيم البحث

اقرأ أيضاً

Electromagnetic induction imaging with atomic magnetometers has disclosed unprecedented domains for imaging, from security screening to material characterization. However, applications to low-conductivity specimens -- most notably for biomedical imag ing -- require sensitivity, stability, and tunability only speculated thus far. Here, we demonstrate contactless and non-invasive imaging down to 50 S/m using a 50 fT/Hz$^{-1/2}$ $^{87}$Rb radio-frequency atomic magnetometer operating in an unshielded environment and near room temperature. Two-dimensional images of test objects are obtained with a near-resonant imaging approach, which reduces the phase noise by a factor 172, with projected sensitivity of 1 S/m. Our results, an improvement of more than three orders of magnitude on previous imaging demonstrations, push electromagnetic imaging with atomic magnetometers to regions of interest for semiconductors, insulators, and biological tissues.
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many g roups, because operating the optical magnetometers needed for signal detection requires some expertise in atomic physics and optics. Commercially available magnetometers offer a solution to this problem. Here we describe a simple ZULF NMR configuration employing commercial magnetometers, and demonstrate sufficient functionality to measure samples with nuclear spins prepolarized in a permanent magnet or initialized using parahydrogen. This opens the possibility for other groups to use ZULF NMR, which provides a means to study complex materials without magnetic susceptibility-induced line broadening, and to observe samples through conductive materials.
We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object. This configuration satisfies standard requirements in typical applications, from security screening to medical imaging. The ability to scan the magnetometer over the object relies on the miniaturization of the sensor head and on the active compensation of the ambient magnetic field. Additionally, a procedure is implemented to extract high-quality images from the recorded spatial dependent magnetic resonance. The procedure is shown to be effective in suppressing the detrimental effects of the spatial variation of the magnetic environment.
We demonstrate identification of position, material, orientation and shape of objects imaged by an $^{85}$Rb atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information ex tracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97$%$ are obtained. This circumvents the need of solving the inverse problem, and demonstrates the extension of machine learning to diffusive systems such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.
82 - J. Ahokas 2021
We describe the design and performance of a large magnetic trap for storing and cooling of atomic hydrogen (H). The trap operates in the vacuum space of a dilution refrigerator at a temperature of 1.5 K. Aiming at a large volume of the trap we implem ented the octupole configuration of linear currents (Ioffe bars) for the radial confinement, combined with two axial pinch coils and a 3 T solenoid for the cryogenic H dissociator. The octupole magnet consists of eight race-track segments which are compressed towards each other with magnetic forces. This provides a mechanically stable and robust construction with a possibility of replacement or repair of each segment. A maximum trap depth of 0.54 K (0.8 T) was reached, corresponding to an effective volume of 0.5 liters for hydrogen gas at 50 mK. This is an order of magnitude larger than ever used for trapping atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا