ﻻ يوجد ملخص باللغة العربية
Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At $5%$ of Te doping at Sb site thermal conductivity is suppressed from $sim 250$ W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20$%$ Cr/Co doping the thermal conductivity remains $sim 30$ W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of $kappa$ with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit ($ZTsim 0.05$ at $sim 100$ K) in Fe(Sb$_{0.9}$Te$_{0.1}$)$_2$.
We report on the emergence of an Electronic Griffiths Phase (EGP) in the doped semiconductor FeSb$_{2}$, predicted for disordered insulators with random localized moments in the vicinity of a metal-insulator transition (MIT). Magnetic, transport, and
Thermoelectric properties of the system La$_2$NiO$_{4+delta}$ have been recently discussed [Phys. Rev. B 86, 165114 (2012)] via ab initio calculations. An optimum hole-doping value was obtained with reasonable thermopower and thermoelectric figure of
Magnetoresistance (MR) of the Bi$_{2-x}$Pb$_x$Sr$_2$Co$_2$O$_y$ ($x$=0, 0.3, 0.4) single crystals is investigated systematically. A nonmonotonic variation of the isothermal in-plane and out-of-plane MR with the field is observed. The out-of-plane MR
A long-standing issue in topological insulator research has been to find a material that provides an ideal platform for characterizing topological surface states without interference from bulk electronic states and can reliably be fabricated as bulk
Combining LSDA+$U$ and an analysis of superexchange interactions beyond DFT, we describe the magnetic ground states in rutile and anatase Cr-doped TiO$_2$. In parallel, we correct our LSDA+$U$ ground state through GW corrections ($GW$@LSDA+$U$) that